Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Analysis of a FEM/BEM coupling method
for transonic flow computations


Authors: H. Berger, G. Warnecke and W. L. Wendland
Journal: Math. Comp. 66 (1997), 1407-1440
MSC (1991): Primary 65N30, 68N38, 76H05, 49M10, 35L67
DOI: https://doi.org/10.1090/S0025-5718-97-00878-8
MathSciNet review: 1432124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sensitive issue in numerical calculations for exterior flow problems, e.g.around airfoils, is the treatment of the far field boundary conditions on a computational domain which is bounded. In this paper we investigate this problem for two-dimensional transonic potential flows with subsonic far field flow around airfoil profiles. We take the artificial far field boundary in the subsonic flow region. In the far field we approximate the subsonic potential flow by the Prandtl-Glauert linearization. The latter leads via the Green representation theorem to a boundary integral equation on the far field boundary. This defines a nonlocal boundary condition for the interior ring domain. Our approach leads naturally to a coupled finite element/boundary element method for numerical calculations. It is compared with local boundary conditions. The error analysis for the method is given and we prove convergence provided the solution to the analytic transonic flow problem around the profile exists.


References [Enhancements On Off] (What's this?)

  • 1. AGARD Advisory Report No. 211, Test Cases for Inviscid Flow Field Methods, Report of Fluid Dynamics Panel Working Group 07, 1985.
  • 2. D. N. Arnold and W.L. Wendland, "The convergence of spline collocation for strongly elliptic equations on curves", Numer. Math. 47, 317-341 (1985). MR 87f:65142
  • 3. I. Babu\v{s}ka and A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method", in The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz (ed.), Academic Press, New York 1-359 (1972). MR 54:9111
  • 4. E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements, Vol. VI: Fluid Mechanics, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984.
  • 5. H. Berger, "Finite-Element-Approximationen für transsonische Strömungen", Doctoral Thesis, Universität Stuttgart, Germany, 1989.
  • 6. H. Berger, "A convergent finite element formulation for transonic flows", Numer. Math. 56, 425-447 (1989). MR 91g:65204
  • 7. H. Berger and M. Feistauer, "Analysis of the finite element variational crimes in the numerical approximation of transonic flow". Math. Comp. 61, 493-521 (1993). MR 94a:65055
  • 8. H. Berger, G. Warnecke and W. Wendland, "Finite Element-Berechnungen für transsonische Strömungen unter Berücksichtigung verschiedener Fernfeldrandbedingungen." In: Strömungen mit Ablösungen, DGLR-Bericht 88-05, Bonn (1988) 233-242.
  • 9. H. Berger, G. Warnecke and W. Wendland, "Finite elements for transonic potential flows,"Numer. Meth. Part. Diff. Eqns. 6, 17-42 (1990). MR 91h:76053
  • 10. H. Berger, G. Warnecke and W.L. Wendland, "Coupling of FEM and BEM for transonic flows", in The Mathematics of Finite Elements and Applications (J.R. Whiteman ed.) John Wiley & Sons, Chichester, 323-350 (1994). MR 95f:76053
  • 11. L. Bers, "Mathematical aspects of subsonic and transonic gas dynamics," in Surveys in Applied Mathematics III, Wiley, New York, 1958. MR 20:2960
  • 12. L. Bers, "Existence and uniqueness of subsonic flow past a given profile," Commun. Pure Appl. Math. 7, 441-504 (1954). MR 16:417a
  • 13. B. Bojarski, "Subsonic flow of compressible fluid," in Mathematical Problems in Fluid Mechanics, Polish Academy of Sciences, Warsaw, 1967. MR 37:4995
  • 14. H. Brezis and G. Stampacchia, "Une nouvelle méthode pour l'étude d'écoulements stationnaires," C. R. Acad. Sci. Paris 276, 129-132 (1973). MR 47:4521
  • 15. M. O. Bristeau, R. Glowinski, J. Periaux, P. Perrier, O. Pironneau and G. Poirier, "Application of optimal control and finite element methods to the calculation of transonic flows and incompressible flows," in Numerical Methods in Applied Fluid Dynamics, B. Hunt (ed.), Academic Press, New York, 203-312 (1980). MR 83h:65120
  • 16. M. O. Bristeau, R. Glowinski, J. Periaux, P. Perrier, O. Pironneau and G. Poirier, "Transonic flow simulations by finite elements and least squares methods," in Finite Elements in Fluids IV, R. H. Gallagher, G. Carey, J. T. Oden, and O. C. Zienkiewicz (eds.), Wiley, Chichester, 453-482 (1982).
  • 17. M. O. Bristeau, R. Glowinski, J. Periaux, P. Perrier, O. Pironneau and G. Poirier, "On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods II. Application to transonic flow simulations," Comput. Methods Appl. Mech. Engrg. 51, 363-394 (1985). MR 87d:76100
  • 18. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • 19. J. F. Ciavaldini, M. Pogu and G. Tournemine, "Une nouvelle approche dans le plain physique pour le calcul d'écoulements subcritiques et stationaires autor d'un profil portant," J. de Mécanique 16, 257-288 (1977). MR 56:10418
  • 20. J. F. Ciavaldini, M. Pogu and G. Tournemine, "Existence and regularity of stream functions for subsonic flows past profiles with a sharp trailing edge," Arch. Rat. Mech. Anal. 93, 1-14 (1986). MR 87d:76108
  • 21. C. Coclici and W.L. Wendland, "On the treatment of the Kutta-Joukowski condition in transonic flow computations", in preparation (Preprint 95-14 MIA Univ. Stuttgart).
  • 22. M. Costabel, "Boundary integral operators on Lipschitz domains: Elementary results," SIAM J. Math. Anal. 19, 613-626 (1988). MR 89h:35090
  • 23. R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience Publishers, New York, 1962. MR 25:4216
  • 24. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Wiley, New York (1948). [Reprinted by Springer-Verlag, New York (1985).] MR 10:637c; MR 54:9284
  • 25. M. Crouzeix and V. Thomée, "The stability on $L_p$ and $W_p^1$ of the $L_2$-projection onto finite element function spaces", Math. Comp. 48, 521-532 (1987). MR 88f:41016
  • 26. M. Dauge and M. Pogu, "Existence et régularité de la function potentiel pour des écoulements subcritiques s'établissant autour d'un corps à singularité conique," Ann. Fac. des Sci. de Toulouse IX, 213-242 (1988). CMP 97:05
  • 27. M. Djaoua, "A method of calculation of lifting flows around two-dimensional corner-shaped bodies," Math. Comp. 36, 405-425 (1981). MR 82c:76011
  • 28. H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York (1969). MR 41:1976
  • 29. M. Feistauer, J. Felcman, M. Rokyta and Z. Vlá\v{s}ek, "Finite-element solution of flow problems with trailing conditions," J. Comp. Appl. Math. 44, 131-165 (1992). MR 94d:76052
  • 30. M. Feistauer, G.C. Hsiao, R.E. Kleinman and R. Tezaur, "Analysis and numerical realization of coupled BEM and FEM for nonlinear exterior problems", in Inverse Scattering and Potential Problems in Mathematical Physics (R.E Kleinman, R. Kress and E. Martensen eds.), Verlag Peter Lang, Frankfurt, 47-73 (1995). MR 95m:76045
  • 31. M. Feistauer and J. Ne\v{c}as, "On the solvability of transonic potential flow problems," Z. Anal. Anw. 4, 305-329 (1985). MR 87a:76078
  • 32. M. Feistauer and A. \v{Z}ení\v{s}ek, "Finite element solution of nonlinear elliptic problems," Numer. Math. 50, 451-475 (1987). MR 88f:65195
  • 33. G.J. Fix and G. Strang, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J. (1973). MR 56:1747
  • 34. F. I. Frankl and M. Keldysh, "Die äußere Neumannsche Aufgabe für nichtlineare elliptische Differentialgleichungen mit Anwendungen auf die Theorie der Flügel im kompressiblen Gas," Bull. Acad. Sci. URSS 12, 561-607 (1934).
  • 35. G. N. Gatica and G. C. Hsiao, "The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem," Numer. Math. 61, 171-214 (1992).
  • 36. R. Glowinski and O. Pironneau, "On the computation of transonic flows," in Funct. Anal. and Num. Anal., H. Fujita (ed.), Jap. Soc. Prom. Sci., Tokyo-Kyoto, 143-173 (1978).
  • 37. U. Göhner and G. Warnecke, "A shock indicator for adaptive transonic flow computations", Numer. Math. 66, 423-448 (1994). MR 95a:65199
  • 38. G. C. Hsiao and W. L. Wendland, "A finite element method for an integral equation of the first kind", J. Math. Anal. Appl. 58, 449-481 (1977). MR 57:1945
  • 39. C. Johnson and J. C. Nedelec, "On the coupling of boundary integral and finite element methods," Math. Comp. 35, 1063-1079 (1980). MR 82c:65072
  • 40. B. L. Keyfitz and G. Warnecke, "The existence of viscous profiles and admissibility for transonic shocks," Commun. Part. Diff. Eqns. 16, 1197-1221 (1991). MR 92i:76063
  • 41. N. Kroll and R. K. Jain, Solution of Two-Dimensional Euler Equation Experience with a Finite Volume Code, DFVLR-Forschungsbericht 87-41, DFVLR Institut für Entwurfsaerodynamik, Braunschweig 1987.
  • 42. L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Physik VI - Hydrodynamik, Akademie Verlag, Berlin (1981). MR 93b:00001c
  • 43. M. N. LeRoux, Résolution numérique du problème du potential dans le plan par une méthode variationelle d'éléments finis, Doctoral Thesis, University Rennes, 1974.
  • 44. J. Mandel and J. Ne\v{c}as, "Convergence of finite elements for transonic potential flows", SIAM J. Numer. Anal. 24, 985-996 (1987). MR 89a:65170
  • 45. C. S. Morawetz, "Non-Existence of Transonic Flow Past a Profile I", Commun. Pure Apll. Math. 9, 45-68 (1956). MR 17:1149d
  • 46. C. S. Morawetz, "Non-Existence of Transonic Flow Past a Profile II", Commun. Pure Appl. Math. 10, 107-131 (1957). MR 19:490e
  • 47. C. S. Morawetz, "Non-Existence of Transonic Flow Past a Profile III", Commun. Pure Appl. Math. 17, 357-367 (1964). MR 32:1994
  • 48. C. S. Morawetz, "On a Weak Solution for a Transonic Flow Problem", Cummun. Pur Appl. Math. 38, 797-818 (1985). MR 87c:76087
  • 49. F. Murat, "L'injection du cône positiv de $H^{-1}$ dans $W^{-1,q}$ est compact pour tout $q< 2$," J. Math. Pures Appl. 60, 309-322 (1981). MR 83b:46045
  • 50. J. Ne\v{c}as, Compacite par Entropie et Ecoulements de Fluides, Lecture Notes Université de Charles et E.N-S., Masson, Paris (1989).
  • 51. M. Pogu and G. Tournemine, "Sur une classe de problèmes monotones posés dans des ouverts non bornés, méthode d'approche, algorithmes de résolution et application," Rev. Roumaine Math. Pures Appl. 31, 317-341 (1986). MR 88a:35051
  • 52. R. Rannacher and R. Scott, "Some optimal error estimates for piecewise linear finite element approximations". Math. Comp. 38, 437-445 (1982). MR 83e:65180
  • 53. A. Rizzi and H. Viviant, Eds., Numerical Methods for the Computation of Inviscid Transonic Flows with Shock Wawes - Notes on Numerical Fluid Mechanics III, Vieweg, Braunschweig, 1986. MR 83j:76002
  • 54. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin (1983).
  • 55. I.L. Sofronov and S.V. Tscyncov, "Application of the linear potential flow model to the artificial boundary conditions construction for the Euler equations." (Preprint No. 41 Nat. Center of Math. Simulation, Russian Acad. Sci. Moscow, 1991.) To appear.
  • 56. G. Warnecke, "Admissibility of solutions to the Riemann problems for systems of mixed type - transonic small disturbance theory," In: Nonlinear Evolution Equations that Change Type, B. L. Keyfitz and M. Shearer (eds.), IMA-Series Volume 27, Springer-Verlag, New York, 258-284 (1990). MR 91f:35187
  • 57. J. Zierep, Theoretische Gasdynamik, Braun, Karlsruhe (1976).

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 68N38, 76H05, 49M10, 35L67

Retrieve articles in all journals with MSC (1991): 65N30, 68N38, 76H05, 49M10, 35L67


Additional Information

H. Berger
Affiliation: Braunag F-1 TW4, Frankfurter Str 145, D-61476 Kronberg, Germany

G. Warnecke
Affiliation: Fakultät für Mathematik, Otto–von–Guericke–Universität Magdeburg, PF 4120, D–39016 Magdeburg, Germany
Email: gerald.warnecke@mathematik.uni-magdeburg.de

W. L. Wendland
Affiliation: Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
Email: wendland@mathematik.uni-stuttgart.de

DOI: https://doi.org/10.1090/S0025-5718-97-00878-8
Keywords: Transonic full potential equation, artificial boundary conditions, finite elements, boundary elements, asymptotic error analysis
Received by editor(s): August 13, 1993
Received by editor(s) in revised form: September 18, 1995
Additional Notes: The research reported in this paper was supported by the “Stiftung Volkswagenwerk”.
Dedicated: This work is dedicated to Professor Dr. Klaus Kirchgässner on the occasion of his 60th birthday
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society