Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical solution of isospectral flows


Authors: Mari Paz Calvo, Arieh Iserles and Antonella Zanna
Journal: Math. Comp. 66 (1997), 1461-1486
MSC (1991): Primary 65L05; Secondary 34C30
DOI: https://doi.org/10.1090/S0025-5718-97-00902-2
MathSciNet review: 1434938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we are concerned with the problem of solving numerically isospectral flows. These flows are characterized by the differential equation

\begin{displaymath}L' = [B(L), L], \quad L(0)=L_0, \end{displaymath}

where $L_0$ is a $d\times d$ symmetric matrix, $B(L)$ is a skew-symmetric matrix function of $L$ and $[B,L]$ is the Lie bracket operator. We show that standard Runge-Kutta schemes fail in recovering the main qualitative feature of these flows, that is isospectrality, since they cannot recover arbitrary cubic conservation laws. This failure motivates us to introduce an alternative approach and establish a framework for generation of isospectral methods of arbitrarily high order.


References [Enhancements On Off] (What's this?)

  • 1. [B1]B1 R. W. Brockett, ``Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems'', Lin. Alg. Appl., 146 (1991), 79-91. MR 92j:90043
  • 2. [BBR]BBR A. M. Bloch, R. W. Brockett and T. Ratiu, ``A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map'', Bull. Amer. Math. Soc., 23 (1990), 477-485. MR 91e:58067
  • 3. [C]C T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers, New York, London, Paris, 1978. MR 58:1979
  • 4. [Ch]Ch M. T. Chu, ``The generalized Toda flow, the QR algorithm and the center manifold theory'', SIAM J. Alg. Discr. Math., 5 (1984), 187-201. MR 86g:58071
  • 5. [ChD1]ChD1 M. T. Chu and K. R. Driessel, ``The projected gradient method for least squares matrix approximations with spectral constraints'', SIAM J. Numer. Anal., 27 (1990), 1050-1060. MR 91f:65073
  • 6. [ChD2]ChD2 M. T. Chu and K. R. Driessel, ``Can real symmetric Toeplitz matrices have arbitrary real spectra?'', Technical report, Idaho State University.
  • 7. [Co]Co G. J. Cooper, ``Stability of Runge-Kutta methods for trajectory problems'', IMA J. Numer. Anal., 7 (1987), 1-13. MR 90d:65133
  • 8. [D]D K. R. Driessel, ``On isospectral gradient flows solving matrix eigenproblems using differential equations'', Inverse Problems, J. R. Cannon and U. Hournung eds., Birkhauser-Verlag (1986), 69-90. MR 88h:58097
  • 9. [DNT]DNT P. Deift, T. Nanda and C. Tomei, ``Ordinary differential equations and the symmetric eigenvalue problem'', SIAM J. Numer. Anal., 20 (1983), 1-22. MR 86k:58101
  • 10. [DRTW]DRTW P. Deift, S. Rivera, C. Tomei and D. Watkins, ``A monotonicity property for Toda-type flows'', SIAM J. Matrix Anal. Appl., 12 (1991), 463-468. MR 93f:15015
  • 11. [DRV]DRV L. Dieci, R. D. Russell and E. S. van Vleck, ``Unitary integrators and applications to continuous orthonormalization techniques'', SIAM J. Numer. Anal., 31 (1994), 261-281. MR 95a:65121
  • 12. [ES]ES T. Eirola and J. M. Sanz-Serna, ``Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods'', Numer. Math., 61 (1992), 281-290. MR 92m:65090
  • 13. [F]F H. Flaschka, ``The Toda lattice'', I. Phys. Rev. B9 (1974), 1924-25. MR 53:12411
  • 14. [G]G F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959. MR 21:6372c
  • 15. [GRPD]GRPD G. Gaeta, C. Reiss, M. Peyrard and T. Dauxois, ``Simple models for nonlinear DNA dynamics'', Rivista Nuovo Cimento, 17 (1994), 1-47.
  • 16. [HM]HM U. Helmke and J. B. Moore, ``Singular value decomposition via gradient flows'', Systems Control Lett., 14 (1990), 369-377.
  • 17. [HNW]HNW E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems. Second Revised Edition, Springer, Berlin, 1993. MR 94c:65005
  • 18. [I]I A. Iserles, ``Solving linear ordinary differential equations by exponentials of iterated commutators'', Numer. Math., 45 (1984), 183-199. MR 86b:65074
  • 19. [KvM]KvM M. Kac and P. van Moerbeke, ``On explicitly solvable systems of differential equations related to certain Toda lattices'', Adv. in Math., 16 (1975), 160-169. MR 51:6182
  • 20. [L]L J. Lagarias, ``Monotonicity properties of the Toda flow, the QR-flow and subspace iteration'', SIAM J. Matrix Anal. Appl., 12, 3 (1991), 449-462. MR 93f:15014
  • 21. [Lb]Lb J. D. Lambert Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore (1991). MR 92i:65114
  • 22. [MMH]MMH J. B. Moore, R. E. Mahony and U. Helmke, ``Numerical gradient algorithms for eigenvalue and singular value calculations'', SIAM J. Matrix Anal. Appl., 15 (1994), 881-902. MR 95f:65079
  • 23. [Mo]Mo J. Moser, ``Finitely many mass points on the line under the influence of an exponential potential - An integrable system'', Dynamic Systems Theory and Applications, (J. Moser, ed.) Springer-Verlag, New York, Berlin, Heildelberg, 1975, 467-497. MR 56:13279
  • 24. [Na1]Na1 T. Nanda, Ph.D. Thesis, New York Univ., New York, 1982.
  • 25. [Na2]Na2 T. Nanda, ``Differential equations and the QR algorithm'', SIAM J. Numer. Anal., 22 (1985), 310-321. MR 87h:34012
  • 26. [T]T M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, Heildelberg, New York (1981). MR 82k:58052b
  • 27. [Sy]Sy W. W. Symes, ``The QR algorithm and scattering for the finite nonperiodic Toda lattice'', Phys. D., 4 (1982), 275-280. MR 83h:58053
  • 28. [Sz]Sz J. M. Sanz-Serna, ``Runge-Kutta schemes for Hamiltonian systems'', BIT, 28 (1988), 877-883. MR 90b:65145
  • 29. [SzC]SzC J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London (1994). MR 95f:65006
  • 30. [SzV]SzV J. M. Sanz-Serna and J. G. Verwer, ``Conservative and nonconservative schemes for the solution of the nonlineal Schrödinger equation'', IMA J. Numer. Anal., 6 (1986), 25-42. MR 89h:65153
  • [W] D. S. Watkins, ``Isospectral flows'', SIAM Rev., 26 (1984), 379-391. MR 86d:58054
  • 31. [WE]WE D. Watkins and L. Elsner, ``Self-equivalent flows associated with the singular value decomposition'', SIAM J. Matrix Anal. Appl., 10 (1989), 244-258. MR 90m:65064

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65L05, 34C30

Retrieve articles in all journals with MSC (1991): 65L05, 34C30


Additional Information

Mari Paz Calvo
Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain

Arieh Iserles
Affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

Antonella Zanna
Affiliation: Newnham College, University of Cambridge, Cambridge, England

DOI: https://doi.org/10.1090/S0025-5718-97-00902-2
Keywords: Isospectral flows, Runge-Kutta methods, conservation laws, unitary flows, Toda lattice equations.
Received by editor(s): September 7, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society