EV ALUATION OF DISCRETE LOGARITHMS
IN A GROUP OF p-TORSION POINTS
OF AN ELLIPTIC CURVE IN CHARACTERISTIC p

I. A. SEMAEV

Abstract. We show that to solve the discrete log problem in a subgroup of
order p of an elliptic curve over the finite field of characteristic p one needs
$O(\ln p)$ operations in this field.

Let F_q be the finite field of $q = p^l$ elements. We define an elliptic curve E over
F_q to be an equation of the form

$$y^2 = x^3 + Ax + B.$$

We suppose $p \neq 2, 3$. Let $E(F_q)$ be the set of points E rational over F_q. It is known
that $|N_q - q - 1| \leq 2q^{1/2}$ with $N_q = |E(F_q)|$. The set $E(F_q)$ is a finite abelian
group with the “infinite point” P_{∞} as the identity element.

The discrete logarithm problem is to compute an integer n such that
$Q = nP$, where $Q, P \in E(F_q)$, if such an n exists. This problem is of great significance in
cryptology [1], [2]. Suppose that the point P generates a subgroup (P) of order m.
If $(m, p) = 1$, then the subgroup (P) is isomorphic to some multiplicative subgroup
of an extension F_{q^k} where $q^k \equiv 1 \pmod{m}$. The values of the isomorphism from (P)
to $F_{q^k}^*$ can be evaluated in a very simple manner. The complexity of the algorithm is
no more than $O(\ln m)$ operations in F_{q^k} [3], [4], [5]. Thus when k is small we have an
algorithm for the discrete log problem in (P) more effective than the algorithms of
the kind shown in [6], [7]. However if $(m, p) \neq 1$ the reduction above is impossible.

We have $m = p^s m_1$ where $s > 0$ and $(m_1, p) = 1$. Consequently, the discrete log
problem in (P) is reduced to a discrete log problem in subgroups of order m_1 and
p. For the subgroup of order m_1 one can apply the reduction to a multiplicative
subgroup of the extension F_{q^k} with minimal k such that $q^k \equiv 1 \pmod{m_1}$.

In this paper we construct an isomorphism from the subgroup of order p to the
additive group of F_q. One can evaluate the values of this isomorphism with $O(\ln p)$
operations in F_q. Thus the discrete log problem in a subgroup of order p of an
elliptic curve over the field of characteristic p is polynomial.

Assume that a point $P \in E(F_q)$ generates a subgroup of order p. We let t_R
denote a local parameter at a point R the coordinates of which are (x_R, y_R) if
$R \neq P_{\infty}$. If R is not of order 2 or P_{∞}, then $t_R = x - x_R$. If $R \neq P_{\infty}$ is a point of
order 2, then $t_R = y$. Finally $t_{P_{\infty}} = x/y$. It must be noted that a point R of order
2 on E has the coordinates $(x_R, 0)$. Let us take up to the end of this article a point $R \in \langle P \rangle - P_{\infty}$.

It is known that E is isomorphic to the quotient of the group of divisors of degree 0 by the subgroup of principal divisors, a point Q corresponding to a divisor $D_Q = \sum n_T T$ where Q is a sum on E of the points T taken with multiplicities n_T. For example, $D_Q = (Q) - (P_{\infty})$. If $Q \in \langle P \rangle$, then pD_Q is a principal divisor that is denoted $(f_Q) = pD_Q$ for some function f_Q on E.

Lemma 1. Let f be a function on E such that $(f) = pD$ for some nonprincipal divisor D. Let $f' = df/dx$ be the derivative of f with respect to x. Then $(f') = (f) - (y)$.

Proof. Let v_Q be the valuation at the point Q. Let $D = \sum n_Q Q$. Set $f = t_Q^{pl_Q} f_1$ where f_1 is regular at Q and $f_1(Q) \neq 0$. First we assume that Q is not in the divisor of the function y; that is, Q is neither of order 2 nor P_{∞}. Hence $df/dx = df/d(x - x_Q) = t_Q^{pl_Q} df_1/dt_Q$. The function df_1/dt_Q is regular at Q [8]. Then $v_Q(f') = pl_Q + m_Q$ where $m_Q = v_Q(df_1/dt_Q) \geq 0$. Let Q be a point of order 2. Then

$$df/dx = (df/dy)dy/dx = y^{pl_Q}((3x^2 + A)/2y)df_1/dy,$$

where $dy/dx = (3x^2 + A)/2y$. Since $v_Q((3x^2 + A)/2y) = -1$, in this case $v_Q(f') = pl_Q + m_Q - 1$, with $m_Q = v_Q(df_1/dt_Q) \geq 0$. Set $Q = P_{\infty}$. Then

$$df/dx = (df/d(x/y))d(x/y)/dx = (x/y)^{pl_Q}((-x^3 + Ax + B)/2y^3)df_1/d(x/y),$$

where $d(x/y)/dx = (-x^3 + Ax + B)/2y^3$. Hence we have $v_Q(f') = pl_Q + m_Q + 3$ because $v_Q((-x^3 + Ax + B)/2y^3) = 3$ and $m_Q = v_Q(df_1/dt_Q) \geq 0$. Let $D_1 = \sum m_Q Q$. As we have seen D_1 is a positive divisor. On the other hand, since $(f') = (f) - (y) + D_1$, the divisor D_1 is principal. So $D_1 = 0$ and the lemma is proved.

Consider the following map ϕ of points of the group $\langle P \rangle$ to F_q:

$$\phi(Q) = (f_Q' f_Q)/(R), \quad \phi(P_{\infty}) = 0.$$

Lemma 2. The value $\phi(Q)$ is well defined. The map ϕ is an isomorphic embedding of $\langle P \rangle$ into the additive group of F_q.

Proof. Let D'_Q, D_Q be linearly equivalent divisors. Hence there is the function g such that $(g) = D'_Q - D_Q$. So if $(f) = pD'_Q$, then $g^p f = f_Q$. It is easy to see that $f'_Q / f_Q = f' / f$ so that $\phi(Q)$ is well defined. One can always take D_Q rational over F_q. So $f_Q'/f_Q(R) \in F_q$, since R is rational over F_q. Let us show that ϕ is a homomorphism. Let $Q_i \in \langle P \rangle$ and $(f_{Q_i}) = pD_{Q_i}$, $i = 1, 2$. Define $D_{Q_1 + Q_2} = D_{Q_1} + D_{Q_2}$. Then

$$(f_{Q_1 + Q_2}) = pD_{Q_1 + Q_2} = (f_{Q_1}, f_{Q_2}).$$

So the functions $f_{Q_1 + Q_2}$ and f_{Q_1}, f_{Q_2} are equal up to a multiplicative constant. Hence

$$f'_{Q_1 + Q_2} / f_{Q_1 + Q_2} = f'_{Q_1} / f_{Q_1} + f'_{Q_2} / f_{Q_2}.$$

We have proved that ϕ is a homomorphism. Since ϕ is non-vanishing on $\langle P \rangle$, then ϕ is an isomorphism and the lemma is proved.
The construction of this isomorphism can also be derived from a general result of Serre [9, pp. 40–41].

Lemma 3. Let $Q \in \langle P \rangle$. Then the value of the function f_Q/f_Q at R can be evaluated with $O(\log p)$ operations in F_q.

Proof. Let us take $D_Q = (Q + S) - (S)$ where S is of order 2 exactly. Denote by ψ_k the function such that

$$(\psi_k) = k|Q + S| - (kQ + S) - (k - 1)(S).$$

Clearly $\psi_p = f_Q$ up to a multiplicative constant. Let $k = k_1 + k_2$, $k_i \geq 0$. Then the following identity is valid [4]:

$$\psi_k = \psi_{k_1} \psi_{k_2},$$

where λ_{k_1, k_2} is a function such that

$$(\lambda_{k_1, k_2}) = (kQ + S) - (k_1Q + S) - (k_2Q + S) + (S).$$

The identity (1) gives us a method for evaluation of the value $f_Q^2/f_Q(R)$. Indeed, from (1) we have

$$\psi_k = \psi_{k_1} \psi_{k_2} = \psi_{k_1} + \psi_{k_2} - \lambda_{k_1, k_2}/\lambda_{k_1, k_2}.$$

Hence the function ψ_k is expressed by a linear combination of $O(\log k)$ functions of the form $\lambda_{k_1, k_2}/\lambda_{k_1, k_2}$. Let η_{k_1, k_2} be

$$(\eta_{k_1, k_2}) = ((k_1 + k_2)Q + S) + (-k_1Q + S) + (-k_2Q + S) - 3S,$$

$$\kappa_k$$

be

$$\kappa_k = (kQ + S) + (-kQ + S) - 2S.$$

Let us note that $\eta_{k_1, k_2}(X - S), \kappa_k(X - S)$ are linear functions in x, y. The coefficients of these functions are determined by the coordinates of the points $(k_1 + k_2)Q, k_1Q, k_2Q$. We have the equality

$$\lambda_{k_1, k_2} = \eta_{k_1, k_2} \kappa_k^{-1} \kappa_k^{-1}.$$

Then it is easy to see that

$$\lambda_{k_1, k_2}/\lambda_{k_1, k_2} = \eta_{k_1, k_2}/\eta_{k_1, k_2} = \kappa_k^{-1} \kappa_k^{-1}.$$

The functions on the right-hand side of this equality can be determined from the following considerations. Let $\delta = ax + by + c$ be any linear function in x, y. Let $\delta_1 = \delta(X + S)$. We have to find the value of the function δ_1'/δ_1 at some point R. Express this function by the functions δ, δ', where $\delta' = d\delta/dx = a + b(3x^2 + A)/2y$. We have $d\delta = (2y\delta')dx/2y$. It is known [8] that $dx/2y$ is an invariant differential on E. In other words $(dx/2y)(X + S) = (dx/2y)(X)$ for any point $S \in E$. So denoting $\delta_2 = 2y\delta'$ we have $d\delta(X + S) = \delta_2(X + S)dx/2y$. Hence $\delta_1' = \delta_2(X + S)/2y$. Finally,

$$\delta_1'/\delta_1 = \delta_2(X + S)/2y \delta(X + S).$$

Thus we have to evaluate the values of $O(\log k)$ functions of type δ'/δ where the coefficients are determined by the coordinates of the points $(k_1 + k_2)Q, k_1Q, k_2Q$. Altogether we have to evaluate $O(\log k)$ such points. Since the points of this set are expressed by the same set, the complexity of this calculation is no more than $O(\log k)$ operations in F_q.

From (2) it follows that the functions $\eta_{k_1, k_2}'/\eta_{k_1, k_2}, \kappa_{k_1}'/\kappa_{k_2}$, are regular at R. Thus the total complexity of evaluation of the values of the functions ψ_k/ψ_k at R
takes no more than $O(\ln k)$ operations in F_q. Note that the calculations above are performed in the extension of F_q obtained by adjoining the point of order 2. Since this extension has degree at most 3, the complexity of the operations in this field is proportional to those in F_q. This proves the lemma.

From Lemma 3 it follows that the complexity of the discrete log problem in the group $\langle P \rangle$ is no more than $O(\ln p)$ operations in F_q. Actually, to get an integer n such that $Q = nP$ in $E(F_q)$ one must evaluate the values $\phi(Q), \psi(P) \in F_q$, then $n = \phi(Q) (\phi(P))^{-1}$.

In [10] H.-G. Ruck generalizes the results of the present paper to curves of arbitrary genus.

References

43-2 PROFSOYUSNAYA UL., APT. 723, 117420 MOSCOW, RUSSIA