Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Convergence of Non-stationary Parallel Multisplitting Methods
for Hermitian Positive Definite Matrices


Authors: M. Jesús Castel, Violeta Migallón and José Penadés
Journal: Math. Comp. 67 (1998), 209-220
MSC (1991): Primary 65F10, 65F15
MathSciNet review: 1433264
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Non-stationary multisplitting algorithms for the solution of linear systems are studied. Convergence of these algorithms is analyzed when the coefficient matrix of the linear system is hermitian positive definite. Asynchronous versions of these algorithms are considered and their convergence investigated.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65F10, 65F15

Retrieve articles in all journals with MSC (1991): 65F10, 65F15


Additional Information

M. Jesús Castel
Affiliation: Departamento de Tecnología Informática y Computación, Universidad de Alicante, E-03071 Alicante, Spain
Email: chus@dtic.ua.es

Violeta Migallón
Affiliation: Departamento de Tecnología Informática y Computación, Universidad de Alicante, E-03071 Alicante, Spain
Email: violeta@dtic.ua.es

José Penadés
Affiliation: Departamento de Tecnología Informática y Computación, Universidad de Alicante, E-03071 Alicante, Spain
Email: jpenades@dtic.ua.es

DOI: http://dx.doi.org/10.1090/S0025-5718-98-00893-X
PII: S 0025-5718(98)00893-X
Keywords: Non-stationary methods, asynchronous iterations, linear systems, multisplitting, hermitian matrix, positive definite matrix
Received by editor(s): February 2, 1996
Received by editor(s) in revised form: July 29, 1996
Additional Notes: This research was supported by Spanish CICYT grant number TIC96-0718-C02-02.
Article copyright: © Copyright 1998 American Mathematical Society