Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the Diophantine equation $|ax^{n}-by^{n}|=1$


Authors: Michael A. Bennett and Benjamin M. M. de Weger
Journal: Math. Comp. 67 (1998), 413-438
MSC (1991): Primary 11D41; Secondary 11Y50
DOI: https://doi.org/10.1090/S0025-5718-98-00900-4
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ a, b $ and $ n $ are positive integers with $ b \geq a $ and $ n \geq 3 $, then the equation of the title possesses at most one solution in positive integers $ x $ and $ y $, with the possible exceptions of $ ( a, b, n ) $ satisfying $ b = a + 1 $, $ 2 \leq a \leq \min \{ 0.3 n, 83 \} $ and $ 17 \leq n \leq 347 $. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometric functions, the theory of linear forms in logarithms and recent computational methods related to lattice-basis reduction. Additionally, we compare and contrast a number of these last mentioned techniques.


References [Enhancements On Off] (What's this?)

  • [Ba1] A. Baker, ``Rational approximations to certain algebraic numbers'', Proc. London Math. Soc. (3) 14 [1964], 385-398.MR 28:5029
  • [Ba2] A. Baker, ``Rational approximations to $ \sqrt[3]{2} $ and other algebraic numbers'', Quart. J. Math. Oxford Ser. (2) 15 [1964], 375-383.MR 30:1977
  • [Ba3] A. Baker, ``Contributions to the theory of diophantine equations I: On the representation of integers by binary forms'', Philos. Trans. Roy. Soc. London Ser. A 263 [1968], 173-191.MR 37:4005
  • [BD] A. Baker and H. Davenport, ``The equations $ 3 x^2 - 2 = y^2 $ and $ 8 x^2 - 7 = z^2 $'', Quart. J. Math. (Oxford) (2) 20 [1969], 129-137.MR 40:1333
  • [BW] A. Baker and G. Wüstholz, ``Logarithmic forms and group varieties'', J. Reine Angew. Math. 442 [1993], 19-62.MR 94i:11050
  • [Be1] M. Bennett, ``Effective measures of irrationality for certain algebraic numbers'', J. Austral. Math. Soc., to appear.
  • [Be2] M. Bennett, ``Explicit lower bounds for rational approximation to algebraic numbers'', Proc. London Math. Soc., to appear.
  • [BH] Yu. Bilu and G. Hanrot, ``Solving Thue equations of high degree'', J. Number Theory 60 [1996], 373-392. CMP 97:02
  • [Ch] G.V. Chudnovsky, ``On the method of Thue-Siegel'', Ann. Math. II Ser. 117 [1983], 325-382. MR 85g:11058
  • [Co] H. Cohen, Algorithmic Algebraic Number Theory, Springer Verlag, Berlin, 1993.
  • [DM] H. Darmon and L. Merel, ``Winding quotients and some variants of Fermat's Last Theorem'', J. Reine Angew. Math., to appear.
  • [De] B.N. Delone, ``Solution of the indeterminate equation $ X^3 q + Y^3 = 1 $'', Izv. Akad. Nauk SSR (6) 16 [1922], 253-272.
  • [DF] B.N. Delone and D.K. Faddeev, The Theory of Irrationalities of the Third Degree, Translation of Math. Monographs, Vol. 10, Am. Math. Soc., 1964.MR 28:3955
  • [Do] Y. Domar, ``On the Diophantine equation $ | A x^n - B y^n | = 1, n \geq 5 $'', Math. Scand. 2 [1954], 29-32.MR 16:13c
  • [Ev1] J.-H. Evertse, Upper Bounds for the Numbers of Solutions of Diophantine Equations, PhD Thesis, Leiden, 1983.
  • [Ev2] J.-H. Everste, ``On the equation $ a x^n - b y^n = c $'', Comp. Math. 47 [1982], 289-315.MR 84d:10022
  • [Ev3] J.-H. Evertse, ``On the representation of integers by binary cubic forms of positive discriminant'', Invent. Math. 73 [1983], 117-138.MR 85e:11026a
  • [H] S. Hyrrö, ``Über die Gleichung $ a x^n - b y^n = z $ und das Catalansche Problem'', Ann. Acad. Sci. Fenn. Ser. A I, No. 355, 1964, 50 pp.
  • [LMN] M. Laurent, M. Mignotte and Y. Nesterenko, ``Formes linéaires en deux logarithmes et déterminants d'interpolation'', J. Number Theory 55 [1995], 285-321.MR 96h:11073
  • [LLL] A.K. Lenstra, H.W. Lenstra jr. and L. Lovász, ``Factoring polynomials with rational coefficients'', Math. Ann. 261 [1982], 515-534. MR 84a:12002
  • [Le] W.J. LeVeque, Topics in Number Theory, Addison-Wesley, Reading, Mass. 1956.MR 18:283d
  • [Lj1] W. Ljunggren, ``Einige Eigenschaften der Einheitenreeller quadratischer und rein biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse von bestimmter Gleichungen vierten Grades'', Det Norske Vidensk. Akad. Oslo Skrifter I, No. 12 [1936], 1-73.
  • [Lj2] W. Ljunggren, ``On an improvement of a theorem of T. Nagell concerning the Diophantine equation $ A x^3 + B y^3 = C $'', Math. Scan. 1 [1953], 297-309. MR 15:400d
  • [Mi] M. Mignotte, ``A note on the equation $ a x^n - b y^n = c $'', Acta Arith. 75 [1996], 287-295. MR 97c:11042
  • [MW] M. Mignotte and B.M.M. de Weger, ``On the diophantine equations $ x^2 + 74 = y^5 $ and $ x^2 + 86 = y^5 $'', Glasgow Math. J. 38 [1996], 77-85. MR 97b:11044
  • [Mo] L.J. Mordell, Diophantine Equations, Academic Press, London, 1969. MR 40:2600
  • [Mu] J. Mueller, ``Counting solutions of $ | a x^r - b y^r | \leq h $'', Quart. J. Math. Oxford (2) 38 [1987], 503-513. MR 89b:11026
  • [MS] J. Mueller and W.M. Schmidt, ``Thue's equation and a conjecture of Siegel'', Acta Math. 160 [1988], 207-247. MR 89g:11029
  • [N] T. Nagell, ``Solution complète de quelques équations cubiques à deux indéterminées'', J. de Math. (9) 4 [1925], 209-270.
  • [R] P. Ribenboim, Catalan's Conjecture, Academic Press, London, 1994. MR 95a:11029
  • [Sh] T.N. Shorey, ``Perfect powers in values of certain polynomials at integer points'', Math. Proc. Cambridge Philos. Soc. 99 [1986], 195-207.MR 87c:11032
  • [ST] T.N. Shorey and R. Tijdeman, ``New applications of Diophantine approximations to Diophantine equations'', Math. Scand. 39 [1976], 5-18. MR 56:5425
  • [Si] C.L. Siegel, ``Die Gleichung $ a x^n - b y^n = c $'', Math. Ann. 144 [1937], 57-68.
  • [Ta] V. Tartakovski[??]i, ``Auflösung der Gleichung $ x^4 - \rho y^4 = 1 $'', Izv. Akad. Nauk SSR (6) 20 [1926], 301-324.
  • [Th] A. Thue, ``Über Annäherungenswerte algebraischen Zahlen'', J. Reine Angew. Math. 135 [1909], 284-305.
  • [Ti] R. Tijdeman, ``Applications of the Gel'fond-Baker method to rational number theory'', Colloq. Math. Soc. János Bolyai 13 [1976], 399-416. MR 58:27753
  • [TW] N. Tzanakis and B.M.M. de Weger, ``On the practical solution of the Thue equation'', J. Number Theory 31 [1989], 99-132. MR 90c:11018
  • [dW] B.M.M. de Weger, Algorithms for diophantine equations, CWI-tract no. 65, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 90m:11205

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11D41, 11Y50

Retrieve articles in all journals with MSC (1991): 11D41, 11Y50


Additional Information

Michael A. Bennett
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: mabennet@math.lsa.umich.edu

Benjamin M. M. de Weger
Affiliation: Mathematical Institute, University of Leiden, Leiden, The Netherlands, and Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
Email: deweger@few.eur.nl

DOI: https://doi.org/10.1090/S0025-5718-98-00900-4
Received by editor(s): July 22, 1996
Received by editor(s) in revised form: October 7, 1996
Additional Notes: De Weger’s research was supported by the Netherlands Mathematical Research Foundation SWON with financial aid from the Netherlands Organization for Scientific Research NWO
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society