Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the Diophantine equation $|ax^n-by^n|=1$
HTML articles powered by AMS MathViewer

by Michael A. Bennett and Benjamin M. M. de Weger PDF
Math. Comp. 67 (1998), 413-438 Request permission

Abstract:

If $a, b$ and $n$ are positive integers with $b \geq a$ and $n \geq 3$, then the equation of the title possesses at most one solution in positive integers $x$ and $y$, with the possible exceptions of $( a, b, n )$ satisfying $b = a + 1$, $2 \leq a \leq \min \{ 0.3 n, 83 \}$ and $17 \leq n \leq 347$. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometric functions, the theory of linear forms in logarithms and recent computational methods related to lattice-basis reduction. Additionally, we compare and contrast a number of these last mentioned techniques.
References
  • A. Baker, Rational approximations to certain algebraic numbers, Proc. London Math. Soc. (3) 14 (1964), 385–398. MR 161825, DOI 10.1112/plms/s3-14.3.385
  • A. Baker, Rational approximations to $\root 3\of 2$ and other algebraic numbers, Quart. J. Math. Oxford Ser. (2) 15 (1964), 375–383. MR 171750, DOI 10.1093/qmath/15.1.375
  • A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68), 173–191. MR 228424, DOI 10.1098/rsta.1968.0010
  • A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI 10.1093/qmath/20.1.129
  • A. Baker and G. WĂŒstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62. MR 1234835, DOI 10.1515/crll.1993.442.19
  • M. Bennett, “Effective measures of irrationality for certain algebraic numbers”, J. Austral. Math. Soc., to appear.
  • M. Bennett, “Explicit lower bounds for rational approximation to algebraic numbers”, Proc. London Math. Soc., to appear.
  • Yu. Bilu and G. Hanrot, “Solving Thue equations of high degree”, J. Number Theory 60 [1996], 373–392.
  • G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), no. 2, 325–382. MR 690849, DOI 10.2307/2007080
  • H. Cohen, Algorithmic Algebraic Number Theory, Springer Verlag, Berlin, 1993.
  • H. Darmon and L. Merel, “Winding quotients and some variants of Fermat’s Last Theorem”, J. Reine Angew. Math., to appear.
  • B.N. Delone, “Solution of the indeterminate equation $X^3 q + Y^3 = 1$”, Izv. Akad. Nauk SSR (6) 16 [1922], 253–272.
  • B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744
  • Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
  • J.-H. Evertse, Upper Bounds for the Numbers of Solutions of Diophantine Equations, PhD Thesis, Leiden, 1983.
  • Jan-Hendrik Evertse, On the equation $ax^{n}-by^{n}=c$, Compositio Math. 47 (1982), no. 3, 289–315. MR 681611
  • J.-H. Evertse, On the representation of integers by binary cubic forms of positive discriminant, Invent. Math. 73 (1983), no. 1, 117–138. MR 707351, DOI 10.1007/BF01393828
  • S. Hyrrö, “Über die Gleichung $a x^n - b y^n = z$ und das Catalansche Problem”, Ann. Acad. Sci. Fenn. Ser. A I, No. 355, 1964, 50 pp.
  • Michel Laurent, Maurice Mignotte, and Yuri Nesterenko, Formes linĂ©aires en deux logarithmes et dĂ©terminants d’interpolation, J. Number Theory 55 (1995), no. 2, 285–321 (French, with English summary). MR 1366574, DOI 10.1006/jnth.1995.1141
  • A. K. Lenstra, H. W. Lenstra Jr., and L. LovĂĄsz, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
  • Cahit Arf, Untersuchungen ĂŒber reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
  • W. Ljunggren, “Einige Eigenschaften der Einheitenreeller quadratischer und rein biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse von bestimmter Gleichungen vierten Grades”, Det Norske Vidensk. Akad. Oslo Skrifter I, No. 12 [1936], 1–73.
  • Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
  • Maurice Mignotte, A note on the equation $ax^n-by^n=c$, Acta Arith. 75 (1996), no. 3, 287–295. MR 1387866, DOI 10.4064/aa-75-3-287-295
  • Maurice Mignotte and Benjamin M. M. de Weger, On the Diophantine equations $x^2+74=y^5$ and $x^2+86=y^5$, Glasgow Math. J. 38 (1996), no. 1, 77–85. MR 1373962, DOI 10.1017/S0017089500031293
  • L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
  • Julia Mueller, Counting solutions of $|ax^r-by^r|\leq h$, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 503–513. MR 916231, DOI 10.1093/qmath/38.4.503
  • J. Mueller and W. M. Schmidt, Thue’s equation and a conjecture of Siegel, Acta Math. 160 (1988), no. 3-4, 207–247. MR 945012, DOI 10.1007/BF02392276
  • T. Nagell, “Solution complĂšte de quelques Ă©quations cubiques Ă  deux indĂ©terminĂ©es”, J. de Math. (9) 4 [1925], 209–270.
  • Paulo Ribenboim, Catalan’s conjecture, Academic Press, Inc., Boston, MA, 1994. Are $8$ and $9$ the only consecutive powers?. MR 1259738
  • T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 195–207. MR 817661, DOI 10.1017/S0305004100064112
  • T. N. Shorey and R. Tijdeman, New applications of Diophantine approximations to Diophantine equations, Math. Scand. 39 (1976), no. 1, 5–18. MR 447110, DOI 10.7146/math.scand.a-11641
  • C.L. Siegel, “Die Gleichung $a x^n - b y^n = c$”, Math. Ann. 144 [1937], 57–68.
  • V. TartakovskiÄ­, “Auflösung der Gleichung $x^4 - \rho y^4 = 1$”, Izv. Akad. Nauk SSR (6) 20 [1926], 301–324.
  • A. Thue, “Über AnnĂ€herungenswerte algebraischen Zahlen”, J. Reine Angew. Math. 135 [1909], 284-305.
  • R. Tijdeman, Applications of the Gelâ€Čfond-Baker method to rational number theory, Topics in number theory (Proc. Colloq., Debrecen, 1974) Colloq. Math. Soc. JĂĄnos Bolyai, Vol. 13, North-Holland, Amsterdam, 1976, pp. 399–416. MR 0560494
  • N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
  • B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (1991): 11D41, 11Y50
  • Retrieve articles in all journals with MSC (1991): 11D41, 11Y50
Additional Information
  • Michael A. Bennett
  • Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
  • MR Author ID: 339361
  • Email: mabennet@math.lsa.umich.edu
  • Benjamin M. M. de Weger
  • Affiliation: Mathematical Institute, University of Leiden, Leiden, The Netherlands, and Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
  • Email: deweger@few.eur.nl
  • Received by editor(s): July 22, 1996
  • Received by editor(s) in revised form: October 7, 1996
  • Additional Notes: De Weger’s research was supported by the Netherlands Mathematical Research Foundation SWON with financial aid from the Netherlands Organization for Scientific Research NWO
  • © Copyright 1998 American Mathematical Society
  • Journal: Math. Comp. 67 (1998), 413-438
  • MSC (1991): Primary 11D41; Secondary 11Y50
  • DOI: https://doi.org/10.1090/S0025-5718-98-00900-4
  • MathSciNet review: 1434936