Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finite element analysis of compressible and incompressible fluid-solid systems


Authors: Alfredo Bermúdez, Ricardo Durán and Rodolfo Rodríguez
Journal: Math. Comp. 67 (1998), 111-136
MSC (1991): Primary 65N25, 65N30; Secondary 70J30, 73K70, 76Q05
DOI: https://doi.org/10.1090/S0025-5718-98-00901-6
MathSciNet review: 1434937
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with a finite element method to solve interior fluid-structure vibration problems valid for compressible and incompressible fluids. It is based on a displacement formulation for both the fluid and the solid. The pressure of the fluid is also used as a variable for the theoretical analysis yielding a well posed mixed linear eigenvalue problem. Lowest order triangular Raviart-Thomas elements are used for the fluid and classical piecewise linear elements for the solid. Transmission conditions at the fluid-solid interface are taken into account in a weak sense yielding a nonconforming discretization. The method does not present spurious or circulation modes for nonzero frequencies. Convergence is proved and error estimates independent of the acoustic speed are given. For incompressible fluids, a convenient equivalent stream function formulation and a post-process to compute the pressure are introduced.


References [Enhancements On Off] (What's this?)

  • 1. A. Bermúdez, R. Durán, M.A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numér. Anal., 32 (1995) 1280-1295. MR 96e:73072
  • 2. A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems. Int. J. Numer. Methods Eng. 40 (1997) 1435-1448. CMP 97:10
  • 3. A. Bermúdez and R. Rodríguez, Finite element computation of the vibration modes of a fluid-solid system, Comp. Methods in Appl. Mech. and Eng. 119 (1994) 355-370. MR 95j:73064
  • 4. J. Boujot, Mathematical formulation of fluid-structure interaction problems, RAIRO Modél. Math. Anal. Numér. 21 (1987) 239-260. MR 88j:73032
  • 5. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. MR 92d:65187
  • 6. P. Clement, Approximation by finite element functions using local regularization, RAIRO Anal. Num. 9 (1975) 77-84. MR 53:4569
  • 7. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence. Part 2: Error estimates for the Galerkin methods, RAIRO Anal. Numér. 12 (1978) 97-119. MR 58:3404a; MR 58:3404b
  • 8. T. Geveci, B. D. Reddy and H. T. Pearce, On the approximation of the spectrum of the Stokes operator, RAIRO Modél. Math. Anal. Numér. 23 (1989) 129-136. MR 90i:65186
  • 9. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. MR 88b:65129
  • 10. P. Grisvard, Elliptic problems for non-smooth domains, Pitman, Boston, 1985. MR 86m:35044
  • 11. M. Hamdi, Y. Ouset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems, Int. J. Numer. Methods Eng. 13 (1978) 139-150.
  • 12. H.J-P. Morand and R. Ohayon, Interactions fluides-structures, Recherches en Mathématiques Appliquées 23, Masson, Paris, 1992. MR 93m:73031
  • 13. R. Ohayon and E. Sánchez-Palencia, On the vibration problem for an elastic body surrounded by a slightly compressible fluid. RAIRO Modél. Math. Anal. Numér. 17 (1983) 311-326. MR 84f:73030
  • 14. R. Rodríguez and J. Solomin, The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp. 65 (1996) 1463-1475. MR 97a:65090
  • 15. P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics 606, Springer Verlag, Berlin, Heidelberg, New York, 1977, 292-315. MR 58:3547
  • 16. J. Sánchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin, 1989. MR 91c:00018
  • 17. L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483-493. MR 90j:65021

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N25, 65N30, 70J30, 73K70, 76Q05

Retrieve articles in all journals with MSC (1991): 65N25, 65N30, 70J30, 73K70, 76Q05


Additional Information

Alfredo Bermúdez
Affiliation: Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
Email: bermudez@zmat.usc.es

Ricardo Durán
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 – Buenos Aires, Argentina
Email: rduran@mate.dm.uba.ar

Rodolfo Rodríguez
Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 4009, Concepción, Chile
Email: rodolfo@gauss.cfm.udec.cl

DOI: https://doi.org/10.1090/S0025-5718-98-00901-6
Received by editor(s): March 6, 1995
Received by editor(s) in revised form: May 22, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society