The Trotter-Kato theorem and

approximation of PDEs

Authors:
Kazufumi Ito and Franz Kappel

Journal:
Math. Comp. **67** (1998), 21-44

MSC (1991):
Primary 47D05, 47H05, 65J10, 35K22, 35L99

MathSciNet review:
1443120

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present formulations of the Trotter-Kato theorem for approximation of linear C-semigroups which provide very useful framework when convergence of numerical approximations to solutions of PDEs are studied. Applicability of our results is demonstrated using a first order hyperbolic equation, a wave equation and Stokes' equation as illustrative examples.

**1.**H. T. Banks and K. Ito,*A unified framework for approximation in inverse problems for distributed parameter systems*, Control Theory Adv. Tech.**4**(1988), no. 1, 73–90. MR**941397****2.**J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**0448926****3.**R. H. Fabiano and K. Ito,*Semigroup theory and numerical approximation for equations in linear viscoelasticity*, SIAM J. Math. Anal.**21**(1990), no. 2, 374–393. MR**1038898**, 10.1137/0521021**4.**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****5.**K. Ito and F. Kappel,*A uniformly differentiable approximation scheme for delay systems using splines*, Appl. Math. Optim.**23**(1991), no. 3, 217–262. MR**1095661**, 10.1007/BF01442400**6.**Kazufumi Ito, Franz Kappel, and Dietmar Salamon,*A variational approach to approximation of delay systems*, Differential Integral Equations**4**(1991), no. 1, 51–72. MR**1079610****7.**Kazufumi Ito and Janos Turi,*Numerical methods for a class of singular integro-differential equations based on semigroup approximation*, SIAM J. Numer. Anal.**28**(1991), no. 6, 1698–1722. MR**1135762**, 10.1137/0728085**8.**Tosio Kato,*Perturbation theory for linear operators*, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR**0407617****9.**I. Lasiecka and A. Manitius,*Differentiability and convergence rates of approximating semigroups for retarded functional-differential equations*, SIAM J. Numer. Anal.**25**(1988), no. 4, 883–907. MR**954790**, 10.1137/0725050**10.**Seymour V. Parter,*On the roles of “stability” and “convergence” in semidiscrete projection methods for initial-value problems*, Math. Comp.**34**(1980), no. 149, 127–154. MR**551294**, 10.1090/S0025-5718-1980-0551294-9**11.**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****12.**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****13.**Hiroki Tanabe,*Equations of evolution*, Monographs and Studies in Mathematics, vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. Translated from the Japanese by N. Mugibayashi and H. Haneda. MR**533824****14.**Roger Temam,*Navier-Stokes equations. Theory and numerical analysis*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. MR**0609732****15.**H. F. Trotter,*Approximation of semi-groups of operators*, Pacific J. Math.**8**(1958), 887–919. MR**0103420****16.**Wolf von Wahl,*The equations of Navier-Stokes and abstract parabolic equations*, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. MR**832442**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
47D05,
47H05,
65J10,
35K22,
35L99

Retrieve articles in all journals with MSC (1991): 47D05, 47H05, 65J10, 35K22, 35L99

Additional Information

**Kazufumi Ito**

Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695

Email:
kito@eos.ncsu.edu

**Franz Kappel**

Affiliation:
Institut für Mathematik, Universität Graz, Heinrichstraße 36, A8010 Graz, Austria

Email:
franz.kappel@kfunigraz.ac.at

DOI:
http://dx.doi.org/10.1090/S0025-5718-98-00915-6

Keywords:
Semigroups of transformations,
Trotter-Kato-Theorems,
numerical approximation of linear evolutionary equations

Received by editor(s):
August 18, 1995

Received by editor(s) in revised form:
August 1, 1996

Additional Notes:
Research of the first author was supported in part by the NSF under Grant UINT-8521208 and DMS-8818530 and by the Air Force Office of Scientific Research under contract AFOSR-90-0091.

Research by the second author was supported in part by FWF(Austria) under Grants P6005, P8146-PHY and under F003.

Article copyright:
© Copyright 1998
American Mathematical Society