Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Steiner systems $S(5,6,v)$ with $v=72$ and $84$


Authors: M. J. Grannell, T. S. Griggs and R. A. Mathon
Journal: Math. Comp. 67 (1998), 357-359
MSC (1991): Primary 05B05
DOI: https://doi.org/10.1090/S0025-5718-98-00924-7
Supplement: Additional information related to this article.
MathSciNet review: 1451323
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that there are precisely 4204 pairwise non-isomorphic Steiner systems $S(5,6,72)$ invariant under the group $\mathrm{PSL}_2(71)$ and which can be constructed using only short orbits.

It is further proved that there are precisely 38717 pairwise non-isomorphic Steiner systems $S(5,6,84)$ invariant under the group $\mathrm{PSL}_2(83)$ and which can be constructed using only short orbits.


References [Enhancements On Off] (What's this?)

  • 1. R. H. F. Denniston, Some new 5-designs, Bull. London Math. Soc. 8 (1976), 263-267. MR 58:276
  • 2. M. J. Grannell and T. S. Griggs, A note on the Steiner systems $S(5,6,24)$, Ars Combinatoria 8 (1979), 45-48. MR 81e:05032
  • 3. M. J. Grannell, T. S. Griggs and R. A. Mathon, On Steiner systems $S(5,6,48)$, J. Comb. Math. Comb. Comput. 12 (1992), 77-96. MR 93f:05016
  • 4. M. J. Grannell, T. S. Griggs and R. A. Mathon, Some Steiner 5-designs with 108 and 132 points, J. Comb. Designs 1 (1993), 213-238. MR 95j:05060
  • 5. W. H. Mills, A new 5-design, Ars Combinatoria 6 (1978), 193-195. MR 81f:05026
  • 6. B. Schmalz, t-Designs zu vorgegebener Automorphismengruppe, Dissertation, Univ. Bayreuth (1992). MR 93f:05024
  • 7. E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1938), 256-264.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 05B05

Retrieve articles in all journals with MSC (1991): 05B05


Additional Information

M. J. Grannell
Affiliation: Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom

T. S. Griggs
Affiliation: Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom

R. A. Mathon
Affiliation: Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4

DOI: https://doi.org/10.1090/S0025-5718-98-00924-7
Received by editor(s): April 5, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society