Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Computing ray class groups, conductors
and discriminants


Authors: H. Cohen, F. Diaz y Diaz and M. Olivier
Journal: Math. Comp. 67 (1998), 773-795
MSC (1991): Primary 11R37, 11Y40
MathSciNet review: 1443117
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use the algorithmic computation of exact sequences of Abelian groups to compute the complete structure of $(\mathbb{Z}_{K}/\mathfrak{m})^{*}$ for an ideal $\mathfrak{m}$ of a number field $K$, as well as ray class groups of number fields, and conductors and discriminants of the corresponding Abelian extensions. As an application we give several number fields with discriminants less than previously known ones.


References [Enhancements On Off] (What's this?)

  • [B-D-S] Eric Bach, James Driscoll, and Jeffrey Shallit, Factor refinement, J. Algorithms 15 (1993), no. 2, 199–222. MR 1231441, 10.1006/jagm.1993.1038
  • [Ca-Fr] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the Inter national Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
  • [Coh] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
  • [Coh2] Henri Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), no. 216, 1681–1699. MR 1361805, 10.1090/S0025-5718-96-00766-1
  • [Co-Di] Henri Cohen and Francisco Diaz y Diaz, A polynomial reduction algorithm, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 2, 351–360 (English, with French summary). MR 1149802
  • [Co-Di-Ol] H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic methods for finitely generated Abelian groups, submitted to J. of Symbolic Computation 1996.
  • [Da-Po] M. Daberkow and M. Pohst, Computations with relative extensions of number fields with an application to the construction of Hilbert class fields, Proc. ISAAC'95 (1995) (to appear).
  • [Di-Ol] F. Diaz y Diaz and M. Olivier, Algorithmique Algébrique dans les Corps de Nombres, Etat de la Recherche en Algorithmique Arithmétique, Laboratoire A2X, Bordeaux, 1995.
  • [Ha-Ma] George Havas and Bohdan S. Majewski, Hermite normal form computation for integer matrices, Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), 1994, pp. 87–96. MR 1382439
  • [Hec] Erich Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR 638719
  • [Leu] Armin Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 2, 83–106 (English, with French summary). MR 786536
  • [Le-Ni] Armin Leutbecher and Gerhard Niklasch, On cliques of exceptional units and Lenstra’s construction of Euclidean fields, Number theory (Ulm, 1987) Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 150–178. MR 1009799, 10.1007/BFb0086551
  • [Mar] Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 151–193 (French). MR 697261
  • [Nak] Norikata Nakagoshi, The structure of the multiplicative group of residue classes modulo 𝔭^{𝔑+1}, Nagoya Math. J. 73 (1979), 41–60. MR 524007
  • [Odl] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762
  • [Po-Za] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013
  • [Rob] X.-F. Roblot, Unités de Stark et corps de classes de Hilbert, C. R. Acad. Sci. Paris 323 (1996), 1165-1168.
  • [Zan] H. Zantema, Class numbers and units, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 213–234. MR 702518

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11R37, 11Y40

Retrieve articles in all journals with MSC (1991): 11R37, 11Y40


Additional Information

H. Cohen
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: cohen@math.u-bordeaux.fr

F. Diaz y Diaz
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: diaz@math.u-bordeaux.fr

M. Olivier
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: olivier@math.u-bordeaux.fr

DOI: http://dx.doi.org/10.1090/S0025-5718-98-00912-0
Keywords: Ray class groups, conductors, discriminants
Received by editor(s): February 19, 1996
Received by editor(s) in revised form: October 30, 1996
Article copyright: © Copyright 1998 American Mathematical Society