Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing ray class groups, conductors
and discriminants


Authors: H. Cohen, F. Diaz y Diaz and M. Olivier
Journal: Math. Comp. 67 (1998), 773-795
MSC (1991): Primary 11R37, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-98-00912-0
MathSciNet review: 1443117
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use the algorithmic computation of exact sequences of Abelian groups to compute the complete structure of $(\mathbb{Z}_{K}/\mathfrak{m})^{*}$ for an ideal $\mathfrak{m}$ of a number field $K$, as well as ray class groups of number fields, and conductors and discriminants of the corresponding Abelian extensions. As an application we give several number fields with discriminants less than previously known ones.


References [Enhancements On Off] (What's this?)

  • [B-D-S] E. Bach, J. Driscoll and J. Shallit, Factor refinement, J. Algorithms 15 (1993), 199-222. MR 94m:11148
  • [Ca-Fr] J.W.S. Cassels and A. Fröhlich, Algebraic number theory, Academic Press, London, 1967. MR 35:6500
  • [Coh] H. Cohen, A course in computational algebraic number theory, GTM 138, Springer-Verlag, Berlin, Heidelberg, New York, 1993. MR 94i:11105
  • [Coh2] H. Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), 1681-1699. MR 97e:11159
  • [Co-Di] H. Cohen and F. Diaz y Diaz, A polynomial reduction algorithm, Sém. Th. des Nombres Bordeaux (série 2) 3 (1991), 351-360. MR 93a:11107
  • [Co-Di-Ol] H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic methods for finitely generated Abelian groups, submitted to J. of Symbolic Computation 1996.
  • [Da-Po] M. Daberkow and M. Pohst, Computations with relative extensions of number fields with an application to the construction of Hilbert class fields, Proc. ISAAC'95 (1995) (to appear).
  • [Di-Ol] F. Diaz y Diaz and M. Olivier, Algorithmique Algébrique dans les Corps de Nombres, Etat de la Recherche en Algorithmique Arithmétique, Laboratoire A2X, Bordeaux, 1995.
  • [Ha-Ma] G. Havas and B. Majewski, Hermite normal form computation for integer matrices, Congr. Numer. 105 (1994), 87-96. MR 96k:15004
  • [Hec] E. Hecke, Lectures on the theory of algebraic numbers, GTM 77, Springer-Verlag, Berlin, Heidelberg, New York, 1981. MR 83m:12001
  • [Leu] A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier 35,2 (1985), 83-106. MR 86j:11107
  • [Le-Ni] A. Leutbecher and G. Niklasch, On cliques of exceptional units and Lenstra's construction of Euclidean fields, Lecture Notes in Math., vol. 1380, Springer, New York, 1989. MR 90i:11123
  • [Mar] J. Martinet, Petits discriminants des corps de nombres, Journées arithmétiques 1980 (J.V. Armitage, Ed.), London Math. Soc. Lecture Notes Ser. 56 (1982), 151-193. MR 84g:12009
  • [Nak] N. Nakagoshi, The structure of the multiplicative group of residue classes modulo $\wp ^{N+1}$, Nagoya Math. J. 73 (1979), 41- 60. MR 80c:12010
  • [Odl] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Th. des Nombres Bordeaux (série 2) 2 (1990), 119-141. MR 91i:11154
  • [Po-Za] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Math. and its Applications, Cambridge University Press, Cambridge, 1989. MR 92b:11074
  • [Rob] X.-F. Roblot, Unités de Stark et corps de classes de Hilbert, C. R. Acad. Sci. Paris 323 (1996), 1165-1168.
  • [Zan] H. Zantema, Class numbers and units; Computational methods in number theory II (Math. Centrum, ed.), Math. Centre Tracts 155, Amsterdam, 1982, pp. 213-234. MR 85g:11118a

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11R37, 11Y40

Retrieve articles in all journals with MSC (1991): 11R37, 11Y40


Additional Information

H. Cohen
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: cohen@math.u-bordeaux.fr

F. Diaz y Diaz
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: diaz@math.u-bordeaux.fr

M. Olivier
Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Email: olivier@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0025-5718-98-00912-0
Keywords: Ray class groups, conductors, discriminants
Received by editor(s): February 19, 1996
Received by editor(s) in revised form: October 30, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society