Convergence of a random walk method for a partial differential equation
Author:
Weidong Lu
Journal:
Math. Comp. 67 (1998), 593602
MSC (1991):
Primary 65C05, 65M99
MathSciNet review:
1443122
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A Cauchy problem for a onedimensional diffusionreaction equation is solved on a grid by a random walk method, in which the diffusion part is solved by random walk of particles, and the (nonlinear) reaction part is solved via Euler's polygonal arc method. Unlike in the literature, we do not assume monotonicity for the initial condition. It is proved that the algorithm converges and the rate of convergence is of order , where is the spatial mesh length.
 1.
Alexandre
Joel Chorin, Numerical study of slightly viscous flow, J.
Fluid Mech. 57 (1973), no. 4, 785–796. MR 0395483
(52 #16280)
 2.
A. J. Chorin, Vortex sheet approximation of boundary layer, J. Comp. Phys, 27(1978), 428442.
 3.
A.
J. Chorin and J.
E. Marsden, A mathematical introduction to fluid mechanics,
SpringerVerlag, New YorkHeidelberg, 1979. MR 551053
(81m:76001)
 4.
William
Feller, An introduction to probability theory and its applications.
Vol. II., Second edition, John Wiley & Sons, Inc., New
YorkLondonSydney, 1971. MR 0270403
(42 #5292)
 5.
Jonathan
Goodman, Convergence of the random vortex method, Comm. Pure
Appl. Math. 40 (1987), no. 2, 189–220. MR 872384
(88d:35159), http://dx.doi.org/10.1002/cpa.3160400204
 6.
Ole
H. Hald, Convergence of random methods for a reactiondiffusion
equation, SIAM J. Sci. Statist. Comput. 2 (1981),
no. 1, 85–94. MR 618634
(83c:65210), http://dx.doi.org/10.1137/0902007
 7.
Ole
H. Hald, Convergence of a random method with creation of
vorticity, SIAM J. Sci. Statist. Comput. 7 (1986),
no. 4, 1373–1386. MR 857800
(88a:65013), http://dx.doi.org/10.1137/0907091
 8.
D. G. Long, Convergence of the random vortex method in one and two dimensions, Ph.D. Thesis, Univ. of California, Berkeley, 1986.
 9.
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 10.
Elbridge
Gerry Puckett, Convergence of a random particle
method to solutions of the Kolmogorov equation
𝑢_{𝑡}=𝜈𝑢ₓₓ+𝑢(1𝑢),
Math. Comp. 52 (1989), no. 186, 615–645. MR 964006
(90h:65008), http://dx.doi.org/10.1090/S0025571819890964006X
 11.
Stephen
Roberts, Accuracy of the random vortex method for a problem with
nonsmooth initial conditions, J. Comput. Phys. 58
(1985), no. 1, 29–43. MR 789554
(86f:76022), http://dx.doi.org/10.1016/00219991(85)901548
 12.
Stephen
Roberts, Convergence of a random walk method
for the Burgers equation, Math. Comp.
52 (1989), no. 186, 647–673. MR 955753
(89i:65090), http://dx.doi.org/10.1090/S00255718198909557534
 1.
 A. J. Chorin, Numerical study of slightly viscous flows, J. Fluid Mech., 57(1973), 785796. MR 52:16280
 2.
 A. J. Chorin, Vortex sheet approximation of boundary layer, J. Comp. Phys, 27(1978), 428442.
 3.
 A. J. Chorin & J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer Verlag, New York, 1979. MR 81m:76001
 4.
 W. Feller, An Introduction to Probability Theory and Its Applications, 2nd, Wiley, New York, 1971. MR 42:5292
 5.
 J. Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math., 40(1987), 189220. MR 88d:35159
 6.
 O. H. Hald, Convergence of random methods for a reactiondiffusion equation, SIAM J. Sci. Stat. Comput., 2(1981), 8594. MR 83c:65210
 7.
 O. H. Hald, Convergence of a random method with creation of vorticity, SIAM. J. Sci. Statist. Comput., 7(1986), 13731386. MR 88a:65013
 8.
 D. G. Long, Convergence of the random vortex method in one and two dimensions, Ph.D. Thesis, Univ. of California, Berkeley, 1986.
 9.
 R. D. Morton, Difference Methods for InitialValue Problem, 2nd. ed., Interscience Pub. New York, 1967. MR 36:3515
 10.
 E. G. Puckett, Convergence of a random particle method to solutions of the Kolmogorov equation, Math. Comp., 52(1989), 615645. MR 90h:65008
 11.
 S. G. Roberts, Accuracy of random vortex method for a problem with nonsmooth initial conditions, J. Comput. Phys. 58(1985), 2943. MR 86f:76022
 12.
 S. G. Roberts, Convergence of a random walk method for the Burgers equation, Math. Comp., 52(1989), 647673. MR 89i:65090
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
65C05,
65M99
Retrieve articles in all journals
with MSC (1991):
65C05,
65M99
Additional Information
Weidong Lu
Affiliation:
Department of Mathematics, Fudan University, Shanghai, 200433, China
DOI:
http://dx.doi.org/10.1090/S002557189800917X
PII:
S 00255718(98)00917X
Keywords:
Random walk method,
partial differential equation,
Cauchy problem.
Received by editor(s):
July 20, 1995
Received by editor(s) in revised form:
December 11, 1996
Additional Notes:
This work is partially supported by the Chinese State Education Commission Natural Science Foundation.
Article copyright:
© Copyright 1998
American Mathematical Society
