Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Approximation properties of
multivariate wavelets


Author: Rong-Qing Jia
Journal: Math. Comp. 67 (1998), 647-665
MSC (1991): Primary 41A25, 41A63; Secondary 42C15, 65D15
MathSciNet review: 1451324
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the approximation properties of multivariate refinable functions. We give a characterization for the approximation order provided by a refinable function in terms of the order of the sum rules satisfied by the refinement mask. We connect the approximation properties of a refinable function with the spectral properties of the corresponding subdivision and transition operators. Finally, we demonstrate that a refinable function in $W_{1}^{k-1}(\mathbb{R}^{s})$ provides approximation order $k$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 41A25, 41A63, 42C15, 65D15

Retrieve articles in all journals with MSC (1991): 41A25, 41A63, 42C15, 65D15


Additional Information

Rong-Qing Jia
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: jia@xihu.math.ualberta.ca

DOI: http://dx.doi.org/10.1090/S0025-5718-98-00925-9
PII: S 0025-5718(98)00925-9
Keywords: Refinement equations, refinable functions, wavelets, accuracy, approximation order, smoothness, subdivision operators, transition operators
Received by editor(s): April 17, 1996
Additional Notes: Supported in part by NSERC Canada under Grant OGP 121336.
Article copyright: © Copyright 1998 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia