Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Classification of integral lattices with
large class number


Authors: Rudolf Scharlau and Boris Hemkemeier
Journal: Math. Comp. 67 (1998), 737-749
MSC (1991): Primary 11E41; Secondary 11H55, 11--04
DOI: https://doi.org/10.1090/S0025-5718-98-00938-7
MathSciNet review: 1458224
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A detailed exposition of Kneser's neighbour method for quadratic lattices over totally real number fields, and of the sub-procedures needed for its implementation, is given. Using an actual computer program which automatically generates representatives for all isomorphism classes in one genus of rational lattices, various results about genera of $\ell$-elementary lattices, for small prime level $\ell,$ are obtained. For instance, the class number of $12$-dimensional $7$-elementary even lattices of determinant $7^6$ is $395$; no extremal lattice in the sense of Quebbemann exists. The implementation incorporates as essential parts previous programs of W. Plesken and B. Souvignier.


References [Enhancements On Off] (What's this?)

  • 1. C. Bachoc: Voisinage au sens de Kneser pour les réseaux quaternioniens. Comment. Math. Helv. 70 (1995), 350-374. MR 96d:11077
  • 2. J.W. Benham, J.S. Hsia: Spinor equivalence of quadratic forms. J. Number Theory 17 (1983), 337-342. MR 85f:11024
  • 3. J.H. Conway et al.: Atlas of finite groups. Oxford University Press, 1985. MR 88g:20025
  • 4. J.H. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups. New York, Springer-Verlag, 2nd ed., 1993. MR 93h:11069
  • 5. J.H. Conway, N.J.A. Sloane: Low dimensional lattices. IV. The mass formula. Proc. R. Soc. London A 419 (1988), 259-286. MR 90a:11074
  • 6. B. Habdank-Eichelsbacher: Unimodulare Gitter über reell-quadratischen Zahlkörpern. Dissertation, Bielefeld 1994.
  • 7. M. Kneser: Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch. Math. 7 (1956), 323-332. MR 18:562f
  • 8. M. Kneser: Klassenzahlen definiter quadratischer Formen. Arch. Math. 8 (1957), 241-250. MR 19:838c
  • 9. O.T. O'Meara: Introduction to quadratic forms, Berlin, Springer-Verlag, 1971. MR 50:269
  • 10. G. Nebe, B.B. Venkov: Non-existence of extremal lattices in certain genera of modular lattices. J. Number Theory 60 (1996), 310-317. CMP 97:02
  • 11. H.-V. Niemeier: Definite quadratische Formen der Dimension 24 und Diskriminante 1. J. Number Theory 5 (1973), 142-178. MR 47:4931
  • 12. H. Pfeuffer: Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern. J. Number Theory 3 (1971), 371-411. MR 46:5282
  • 13. W. Plesken, M. Pohst: Constructing integral lattices with prescribed minimum. I. Math. Comp. 45 (1985), 209-221. MR 87e:11077
  • 14. W. Plesken, B. Souvignier: Computing isometries of lattices. Preprint 1993. To appear in J. Symb. Comp.
  • 15. H.-G. Quebbemann: Modular Lattices in Euclidean Spaces. J. Number Theory 54 (1995), 190-202. MR 96i:11072
  • 16. R. Scharlau, B.B. Venkov: The genus of the Barnes-Wall Lattice. Comment. Math. Helvetici 69 (1994), 322-333. MR 95e:11073
  • 17. R. Schulze-Pillot: An algorithm for computing genera of ternary and quaternary quadratic forms. Proc. of the Int. Symp. on Symbolic and Algebraic Computation, Bonn 1991.
  • 18. R.E. Tarjan: Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in Applied Mathematics No. 44, Society for Industrial and Applied Mathematics, Philadelphia, 1983. MR 87g:68029
  • 19. B.B. Venkov: On the classification of integral even unimodular 24-dimensional quadratic forms. Proc. Steklov Inst. Math. 4 (1980), 63-74, also reprinted as chapter 18 in [4]. MR 81d:10024

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11E41, 11H55, 11--04

Retrieve articles in all journals with MSC (1991): 11E41, 11H55, 11--04


Additional Information

Rudolf Scharlau
Affiliation: Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
Email: Rudolf.Scharlau@mathematik.uni-dortmund.de

Boris Hemkemeier
Affiliation: Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
Email: Boris.Hemkemeier@mathematik.uni-dortmund.de

DOI: https://doi.org/10.1090/S0025-5718-98-00938-7
Keywords: Lattice, integral quadratic form, class number of genus, neighbour method, $p$-elementary lattice, extremal modular lattice
Received by editor(s): January 11, 1995
Received by editor(s) in revised form: October 7, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society