Fast evaluation of multiple zeta sums

Author:
Richard E. Crandall

Journal:
Math. Comp. **67** (1998), 1163-1172

MSC (1991):
Primary 11Y60, 11Y65; Secondary 11M99

DOI:
https://doi.org/10.1090/S0025-5718-98-00950-8

MathSciNet review:
1459385

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the multiple zeta sum:

for positive integers with , can always be written as a finite sum of products of rapidly convergent series. Perhaps surprisingly, one may develop fast summation algorithms of such efficiency that the overall complexity can be brought down essentially to that of *one*-dimensional summation. In particular, for any dimension one may resolve good digits of in arithmetic operations, with the implied big- constant depending only on the set .

**1.**D. Bailey, private communication, 1994.**2.**D. Bailey, J. Borwein, and R. Crandall, ``On the Khintchine Constant,''*Math. Comp.*,**66**(1997), 417-431. MR**97c:11119****3.**D. Bailey, J. Borwein and R. Girgensohn, ``Experimental evaluation of Euler sums,''*Experimental Mathematics***3**, (1994), 17-30. MR**96e:11168****4.**D. Borwein, J. Borwein and R. Girgensohn, ``Explicit evaluation of Euler sums,''*Proc. Edinburgh Math. Soc.***38**, (1995), 277-294. MR**96f:11106****5.**J. M. Borwein and P. B. Borwein,*Pi and the AGM*, John Wiley & Sons, 1987. MR**89a:11134****6.**J. Borwein and D. Bradley, ``Empirically Determined Apery-like Formulae for ,'' manuscript, 1996.**7.**J. M. Borwein, D. M. Bradley and D. J. Broadhurst, ``Evaluations of -fold Euler/Zagier sums: a compendium of results for arbitrary ,'' manuscript, 1996.**8.**J. M. Borwein and R. Girgensohn, ``Evaluation of Triple Euler Sums,'' manuscript, 1995.**9.**D. J. Broadhurst, R. Delbourgo and D. Kreimer,*Phys. Lett.***B366**(1996), 421.**10.**R. E. Crandall,*Topics in Advanced Scientific Computation*, TELOS/Springer-Verlag, New York, 1996. MR**97g:65005****11.**R. E. Crandall and J. P. Buhler, ``On the Evaluation of Euler Sums,''*Experimental Mathematics***3**, (1994), 275-285. MR**96e:11113****12.**E. A. Karatsuba, ``Fast Calculation of the Riemann Zeta Function for Integer Values of the Argument ,''*Probs. Information Trans.***31**(1995), 353-355. MR**96k:11155****13.**C. Markett, ``Triple Sums and the Riemann Zeta Function,''*J. Number Theory*, 48 (1994), 113-132. MR**95f:11067****14.**D. Zagier, ``Values of zeta functions and their applications,'' preprint, Max-Planck Institut, 1994.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
11Y60,
11Y65,
11M99

Retrieve articles in all journals with MSC (1991): 11Y60, 11Y65, 11M99

Additional Information

**Richard E. Crandall**

Affiliation:
Center for Advanced Computation, Reed College, Portland, Oregon 97202

Email:
crandall@reed.edu

DOI:
https://doi.org/10.1090/S0025-5718-98-00950-8

Received by editor(s):
September 30, 1996

Received by editor(s) in revised form:
March 3, 1997

Article copyright:
© Copyright 1998
American Mathematical Society