Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids:

Part I. Global estimates

Author:
Alfred H. Schatz

Journal:
Math. Comp. **67** (1998), 877-899

MSC (1991):
Primary 65N30

MathSciNet review:
1464148

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This part contains new pointwise error estimates for the finite element method for second order elliptic boundary value problems on smooth bounded domains in . In a sense to be discussed below these sharpen known quasi-optimal and estimates for the error on irregular quasi-uniform meshes in that they indicate a more local dependence of the error at a point on the derivatives of the solution . We note that in general the higher order finite element spaces exhibit more local behavior than lower order spaces. As a consequence of these estimates new types of error expansions will be derived which are in the form of inequalities. These expansion inequalities are valid for large classes of finite elements defined on irregular grids in and have applications to superconvergence and extrapolation and a posteriori estimates. Part II of this series will contain local estimates applicable to non-smooth problems.

**[1]**H. Blum, Q. Lin, and R. Rannacher,*Asymptotic error expansion and Richardson extrapolation for linear finite elements*, Numer. Math.**49**(1986), no. 1, 11–37. MR**847015**, 10.1007/BF01389427**[2]**Ju. P. Krasovskiĭ,*Properties of Green’s functions, and generalized solutions of elliptic boundary value problems*, Dokl. Akad. Nauk SSSR**184**(1969), 270–273 (Russian). MR**0237956****[3]**Frank Natterer,*Über die punktweise Konvergenz finiter Elemente*, Numer. Math.**25**(1975/76), no. 1, 67–77 (German, with English summary). MR**0474884****[4]**J. A. Nitsche,*𝐿_{∞}-convergence of finite element approximation*, Journées “Éléments Finis” (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR**568857****[5]**Joachim Nitsche,*𝐿_{∞}-convergence of finite element approximations*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 261–274. Lecture Notes in Math., Vol. 606. MR**0488848****[6]**Joachim A. Nitsche and Alfred H. Schatz,*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**0373325**, 10.1090/S0025-5718-1974-0373325-9**[7]**Rolf Rannacher,*Zur 𝐿^{∞}-Konvergenz linearer finiter Elemente beim Dirichlet-Problem*, Math. Z.**149**(1976), no. 1, 69–77 (German). MR**0488859****[8]**Rolf Rannacher and Ridgway Scott,*Some optimal error estimates for piecewise linear finite element approximations*, Math. Comp.**38**(1982), no. 158, 437–445. MR**645661**, 10.1090/S0025-5718-1982-0645661-4**[9]**A. H. Schatz and L. B. Wahlbin,*Interior maximum norm estimates for finite element methods*, Math. Comp.**31**(1977), no. 138, 414–442. MR**0431753**, 10.1090/S0025-5718-1977-0431753-X**[10]**A. H. Schatz and L. B. Wahlbin,*Interior maximum-norm estimates for finite element methods. II*, Math. Comp.**64**(1995), no. 211, 907–928. MR**1297478**, 10.1090/S0025-5718-1995-1297478-7**[11]**A. H. Schatz and L. B. Wahlbin,*On the quasi-optimality in 𝐿_{∞} of the 𝐻¹-projection into finite element spaces*, Math. Comp.**38**(1982), no. 157, 1–22. MR**637283**, 10.1090/S0025-5718-1982-0637283-6**[12]**A. H. Schatz, I. Sloan and L. B. Wahlbin,*Superconvergence in the finite element method and meshes which are locally symmetric with respect to a point*, SIAM J. Numer. Anal.**33**(1996), 505-521. CMP**96:12****[13]**Ridgway Scott,*Optimal 𝐿^{∞} estimates for the finite element method on irregular meshes*, Math. Comp.**30**(1976), no. 136, 681–697. MR**0436617**, 10.1090/S0025-5718-1976-0436617-2**[14]**W. Hoffman, A. H. Schatz, L. B. Wahlbin, and G. Wittum,*The analysis of some local pointwise a posteriore error estimators for elliptic problems*, in preparation.**[15]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N30

Retrieve articles in all journals with MSC (1991): 65N30

Additional Information

**Alfred H. Schatz**

Affiliation:
Department of Mathematics, White Hall, Cornell University, Ithaca, New York 14853

Email:
schatz@math.cornell.edu

DOI:
https://doi.org/10.1090/S0025-5718-98-00959-4

Received by editor(s):
February 7, 1997

Additional Notes:
Supported in part by the National Science Foundation Grant DMS 9403512.

Article copyright:
© Copyright 1998
American Mathematical Society