Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Class number bounds and Catalan's equation


Author: Ray Steiner
Journal: Math. Comp. 67 (1998), 1317-1322
MSC (1991): Primary 11D41; Secondary 11R29
DOI: https://doi.org/10.1090/S0025-5718-98-00966-1
MathSciNet review: 1468945
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We improve a criterion of Inkeri and show that if there is a solution to Catalan's equation

\begin{equation}x^p-y^q=\pm 1,\end{equation}

with $p$ and $q$ prime numbers greater than 3 and both congruent to 3 $(\mathrm{mod}\,4)$, then $p$ and $q$ form a double Wieferich pair. Further, we refine a result of Schwarz to obtain similar criteria when only one of the exponents is congruent to 3 $(\mathrm{mod}\,4)$. Indeed, in light of the results proved here it is reasonable to suppose that if $q\equiv 3$ $(\mathrm{mod}\,4)$, then $p$ and $q$ form a double Wieferich pair.


References [Enhancements On Off] (What's this?)

  • 1. C. Bennet, J. Blass, A. M. W. Glass, D. Meronk and R. Steiner, Linear forms in the logarithms of three positive rational numbers, Journal Théorie des Nombres Bordeaux 9 (1997), 97-136.
  • 2. D. R. Clother, Eliminating possible counterexamples to Catalan's conjecture by computation of class numbers of M2-fields, Master's thesis, Bowling Green State University, 1995.
  • 3. R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp. 66 (1997), 1353-1365. MR 97i:11003
  • 4. K. Inkeri, On Catalan's problem, Acta Arith. 9 (1964), 285-290. MR 29:5780
  • 5. -, On Catalan's conjecture, J. Number Theory 34 (1990), 142-152. MR 91e:11030
  • 6. A. F. Lavrik, A remark on the Siegel-Brauer theorem concerning the parameters of algebraic number fields, Mat. Zametki 8 (1970), 259-263; English Transl. in Math Notes 8 (1970), 615-617. MR 45:219
  • 7. M. Laurent, M. Mignotte and Y. V. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. MR 96h:11073
  • 8. S. Louboutin, Majorations explicites de $|L(1,\chi)|$ (Suite), C. R. Acad Sci. Paris 323 (1996), 443-446. MR 93m:11084
  • 9. S. Louboutin, Computation of relative class numbers of imaginary abelian number fields (to appear).
  • 10. M. Mignotte, A criterion on Catalan's equation, J. Number Theory 52 (1995), 280-283. MR 96b:11042
  • 11. M. Mignotte and Y. Roy, Minorations pour l'équation de Catalan, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 377-380. CMP 97:10
  • 12. -, Catalan's equation has no new solution with either exponent less than 10651, Experiment. Math. 4 (1995), 259-268. MR 97g:11030
  • 13. T. O'Neil, Improved upper bounds on the exponents in Catalan's equation, manuscript, 1995.
  • 14. P. Ribenboim, Catalan's conjecture. Are 8 and 9 the only consecutive powers?, Academic Press, New York, 1994. MR 95a:11029
  • 15. W. Schwarz, A note on Catalan's equation, Acta Arith. 72 (1995), 277-279. MR 96f:11048
  • 16. L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982. MR 85g:11001

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11D41, 11R29

Retrieve articles in all journals with MSC (1991): 11D41, 11R29


Additional Information

Ray Steiner
Affiliation: Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403
Email: steiner@math.bgsu.edu

DOI: https://doi.org/10.1090/S0025-5718-98-00966-1
Keywords: Catalan's equation, class number bounds, algebraic number fields
Received by editor(s): March 17, 1997
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society