Trapezoidal and midpoint splittings for initialboundary value problems
Author:
Willem Hundsdorfer
Journal:
Math. Comp. 67 (1998), 10471062
MSC (1991):
Primary 65M06, 65M12, 65M20
MathSciNet review:
1484899
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we consider various multicomponent splittings based on the trapezoidal rule and the implicit midpoint rule. It will be shown that an important requirement on such methods is internal stability. The methods will be applied to initialboundary value problems. Along with a theoretical analysis, some numerical test results will be presented.
 1.
Richard
M. Beam and R.
F. Warming, An implicit finitedifference algorithm for hyperbolic
systems in conservationlaw form, J. Computational Phys.
22 (1976), no. 1, 87–110. MR 0455435
(56 #13673)
 2.
Philip
Brenner, Michel
Crouzeix, and Vidar
Thomée, Singlestep methods for inhomogeneous linear
differential equations in Banach space, RAIRO Anal. Numér.
16 (1982), no. 1, 5–26 (English, with French
summary). MR
648742 (83d:65268)
 3.
Raimondas
Čiegis and Kestutis
Kiškis, On the stability of LOD difference schemes with
respect to boundary conditions, Informatica 5 (1994),
no. 34, 297–323. MR 1358247
(96j:65085)
 4.
E.
Hairer, S.
P. Nørsett, and G.
Wanner, Solving ordinary differential equations. I, Springer
Series in Computational Mathematics, vol. 8, SpringerVerlag, Berlin,
1987. Nonstiff problems. MR 868663
(87m:65005)
 5.
P.
J. van der Houwen and J.
G. Verwer, Onestep splitting methods for semidiscrete parabolic
equations, Computing 22 (1979), no. 4,
291–309 (English, with German summary). MR 620058
(83e:65148), http://dx.doi.org/10.1007/BF02265311
 6.
Willem
Hundsdorfer, Unconditional convergence of some
CrankNicolson LOD methods for initialboundary value problems, Math. Comp. 58 (1992), no. 197, 35–53. MR 1106972
(92e:65124), http://dx.doi.org/10.1090/S00255718199211069728
 7.
W. Hundsdorfer, A note on stability of the Douglas splitting method. CWI Report, 1996.
 8.
W.
H. Hundsdorfer and J.
G. Verwer, Stability and convergence of the
PeacemanRachford ADI method for initialboundary value problems,
Math. Comp. 53 (1989), no. 187, 81–101. MR 969489
(90h:65195), http://dx.doi.org/10.1090/S00255718198909694897
 9.
J.
F. B. M. Kraaijevanger, 𝐵convergence of the implicit
midpoint rule and the trapezoidal rule, BIT 25
(1985), no. 4, 652–666. MR 811280
(87c:65096), http://dx.doi.org/10.1007/BF01936143
 10.
R.J. LeVeque, Intermediate boundary conditions for LOD, ADI and approximate factorization methods. ICASE Report 8521, Langley Research Center, 1985.
 11.
Christian
Lubich and Alexander
Ostermann, Interior estimates for time discretizations of parabolic
equations, Appl. Numer. Math. 18 (1995),
no. 13, 241–251. Seventh Conference on the Numerical Treatment
of Differential Equations (Halle, 1994). MR 1357920
(96f:65124), http://dx.doi.org/10.1016/01689274(95)00056Z
 12.
G.I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Analysis 1 (P.G. Ciarlet. J.L. Lions, eds.), NorthHolland, Amsterdam, pp. 197462, 1990. CMP 90:08
 13.
Andrew
Ronald Mitchell and D.
F. Griffiths, The finite difference method in partial differential
equations, John Wiley & Sons, Ltd., Chichester, 1980. A
WileyInterscience Publication. MR 562915
(82a:65002)
 14.
J.
G. Verwer and J.
M. SanzSerna, Convergence of method of lines approximations to
partial differential equations, Computing 33 (1984),
no. 34, 297–313. MR 773930
(86k:65085), http://dx.doi.org/10.1007/BF02242274
 15.
N.
N. Yanenko, The method of fractional steps. The solution of
problems of mathematical physics in several variables,
SpringerVerlag, New YorkHeidelberg, 1971. Translated from the Russian by
T. Cheron. English translation edited by M. Holt. MR 0307493
(46 #6613)
 1.
 R.M. Beam, R.F. Warming, An implicit finitedifference algorithm for hyperbolic systems in conservationlaw form. J. Comp. Phys. 22, pp. 87110 (1976). MR 56:13673
 2.
 P. Brenner, M. Crouzeix, V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach space. RAIRO Anal. Numer. 16, pp. 526 (1982). MR 83d:65268
 3.
 R. \v{C}iegis, K. Ki\v{s}kis, On the stability of LOD difference schemes with respect to boundary conditions. Lithuanian Academy of Sciences, Informatica 5, pp. 297323 (1994). MR 96j:65085
 4.
 E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I  Nonstiff Problems. Springer Verlag, Berlin, 1987. MR 87m:65005
 5.
 P.J. van der Houwen, J.G. Verwer, Onestep splitting methods for semidiscrete parabolic equations. Computing 22, pp. 291309 (1979). MR 83e:65148
 6.
 W. Hundsdorfer, Unconditional convergence of some CrankNicolson LOD methods for initialboundary value problems. Math. Comp. 58, pp. 3553 (1992). MR 92e:65124
 7.
 W. Hundsdorfer, A note on stability of the Douglas splitting method. CWI Report, 1996.
 8.
 W. Hundsdorfer, J.G. Verwer, Stability and convergence of the PeacemanRachford ADI method for initialboundary value problems. Math. Comp. 53, pp. 81101 (1989). MR 90h:65195
 9.
 J.F.B.M Kraaijevanger, Bconvergence of the implicit midpoint rule and the trapezoidal rule. BIT 25, pp. 652666 (1985). MR 87c:65096
 10.
 R.J. LeVeque, Intermediate boundary conditions for LOD, ADI and approximate factorization methods. ICASE Report 8521, Langley Research Center, 1985.
 11.
 Ch. Lubich, A. Ostermann, Interior estimates for time discretization of parabolic equations. Appl. Num. Math. 18, pp. 241251 (1995). MR 96f:65124
 12.
 G.I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Analysis 1 (P.G. Ciarlet. J.L. Lions, eds.), NorthHolland, Amsterdam, pp. 197462, 1990. CMP 90:08
 13.
 A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations. John Wiley & Sons, Chichester, 1980. MR 82a:65002
 14.
 J.G. Verwer, J.M. SanzSerna, Convergence of method of lines approximations to partial differential equations. Computing 33, pp. 297313 (1984). MR 86k:65085
 15.
 N.N. Yanenko, The Method of Fractional Steps. Springer Verlag, Berlin, 1971. MR 46:6613
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
65M06,
65M12,
65M20
Retrieve articles in all journals
with MSC (1991):
65M06,
65M12,
65M20
Additional Information
Willem Hundsdorfer
Affiliation:
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Email:
w.hundsdorfer@cwi.nl
DOI:
http://dx.doi.org/10.1090/S0025571898009843
PII:
S 00255718(98)009843
Keywords:
Numerical analysis,
initialboundary value problems,
splitting methods
Received by editor(s):
July 29, 1996
Additional Notes:
Part of the research for this paper was performed during a visit at the University of Coimbra (Portugal) for the EU/HCM project CRHX0930407.
Article copyright:
© Copyright 1998
American Mathematical Society
