FINDING FINITE B_2-SEQUENCES FASTER

BERNT LINDSTRÖM

Abstract. A B_2-sequence is a sequence $a_1 < a_2 < \cdots < a_r$ of positive integers such that the sums $a_i + a_j$, $1 \leq i \leq j \leq r$, are different. When q is a power of a prime and θ is a primitive element in $GF(q^2)$ then there are B_2-sequences $A(q, \theta)$ of size q with $a_q < q^2$, which were discovered by R. C. Bose and S. Chowla.

In Theorem 2.1 I will give a faster alternative to the definition. In Theorem 2.2 I will prove that multiplying a sequence $A(q, \theta)$ by integers relatively prime to the modulus is equivalent to varying θ. Theorem 3.1 is my main result. It contains a fast method to find primitive quadratic polynomials over $GF(p)$ when p is an odd prime. For fields of characteristic 2 there is a similar, but different, criterion, which I will consider in “Primitive quadratics reflected in B_2-sequences”, to appear in Portugaliae Mathematica (1999).

1. Introduction

A sequence of positive integers $a_1 < a_2 < \cdots < a_r$ is called a B_2-sequence (or Sidon sequence) if the sums $a_i + a_j$, $1 \leq i \leq j \leq r$, are different. Erdős and Turán proved in [4] that $r \leq n$ implies that $r < n^{1/2} + \Theta(n^{1/4})$. This was improved by the author in [5] to $r < n^{1/2} + n^{1/4} + 1$.

Erdős asked in [3] if $r < n^{1/2} + C$ is true for a constant C.

B_2-sequences with $r > n^{1/2}$ are known to exist by a theorem of Bose and Chowla [1]. Let q be a power of a prime and θ primitive in $GF(q^2)$; then

$$A(q, \theta) = \{ a : 1 \leq a < q^2, \theta^a - \theta \in GF(q) \}$$

(1.1)

will give a B_2-sequence of size q. These Bose-Chowla B_2-sequences have the stronger property that the sums $a_i + a_j$, $1 \leq i \leq j \leq q$, are different modulo $q^2 - 1$. This has important consequences for the problem of Erdős, which Zhang noticed and used in [7].

By Lemma 3.3 in [7], if $\{a_i\}$ is a B_2-sequence (mod m), then $\{a_i + b\}$ will also be a B_2-sequence (mod m) for any integer b. Assume that $a_1 < a_2 < \cdots < a_r$ and define $a_{r+1} = a_1 + m$. Determine the largest interval (a_i, a_{i+1}) for $1 \leq i \leq r$. Let $b = m + 1 - a_{i+1}$. Then the largest number in the new sequence is, in general, smaller.

Another idea of Zhang was to generate a large number of B_2-sequences for each q by varying the primitive element $\theta \in GF(q^2)$. There are $\varphi(q^2 - 1)$ primitive elements θ, where φ is Euler’s function. This number can be reduced to
φ(q^2 − 1)/4 due to symmetries of the B2-sequences. Then he determines one with largest possible interval giving a smallest possible upper bound by the previous idea. It is laborious to check each time that θ is primitive. But it is only necessary to do this for one A(q, θ). The other sequences can be found if we multiply the sequence by integers which are relatively prime to q^2 − 1 and reduce modulo q^2 − 1. This is contained in Theorem 2.2. In Theorem 2.1 I prove that A(q, θ) can be determined q times faster than suggested by (1.1).

Zhang considered only the case when q = p is an odd prime. To check that θ is primitive in GF(p^2) he used the following necessary and sufficient conditions: (i) θ^{p+1} is primitive in GF(p); (ii) θ, θ^2, . . . , θ^p ̸∈ GF(p) (Lemma 4.3 in [7]).

In Theorem 3.1 I give a new criterion for θ to be primitive in GF(p^2). If θ satisfies the quadratic equation θ^2 = uθ − v with u, v ∈ GF(p) my criterion poses conditions on u^2/v and v.

2. FINDING A(q, θ) FASTER

In this section I will assume that q is a power of a prime. The following Lemma 2.2 generalizes Lemma 4.3 in [7].

Lemma 2.1. Let θ be a root of an irreducible quadratic X^2 − uX + v with u, v ∈ GF(q). Then we have

\begin{equation}
\theta^q + \theta = u, \quad \theta^{q+1} = v.
\end{equation}

Proof. There are two roots θ and θ^v. The relations (2.1) follow since u is the sum and v is the product of the roots of the quadratic. □

Lemma 2.2. Let θ ∈ GF(q^2) and write θ^{q+1} = v. Then θ is a primitive element if and only if

(i) θ^i ̸∈ GF(q) for 1 ≤ i ≤ q; and

(ii) order(v) = q − 1.

Proof. Assume that θ is primitive in GF(q^2). Then order(θ) = q^2 − 1. If θ^i ∈ GF(q) for some i, 1 ≤ i ≤ q, then θ^{i(q-1)} = 1 gives a contradiction. Therefore (i) holds. If order(v) = n < q − 1, then θ^{(q+1)n} − 1 gives another contradiction since (q + 1)n < q^2 − 1. Therefore (ii) holds.

Conversely, assume that (i) and (ii) are satisfied. Note that v ∈ GF(q) since v^{q−1} = θ^{q−1} = 1. Let order(θ) = n = (q + 1)k + r, 0 ≤ r ≤ q. Then θ^n = 1 implies that θ^r = v^−k ∈ GF(q) and r = 0 follows by (i). Then v^k = 1 and k = q − 1 follows by (ii). Hence n = q^2 − 1. □

Let θ be primitive in GF(q^2). Define u_i and v_i ∈ GF(q) by

\begin{equation}
\theta^i = u_i θ − v_i.
\end{equation}

We have u_i ̸= 0 for 1 ≤ i ≤ q by Lemma 2.2(i). Since v is primitive in GF(q) by (ii), there are integers t_i such that

\begin{equation}
u_i = v^{t_i} = θ^{(q+1)t_i}, \quad 1 ≤ i ≤ q.
\end{equation}

If we divide (2.2) by u_i, then we find

\begin{equation}
θ^{i−(q+1)t_i} − θ = −v_i u_i^{−1} ∈ GF(q)
\end{equation}

and since, by definition

\begin{equation}
A(q, θ) = \{a: 1 ≤ a < q^2, θ^a − θ ∈ GF(q)\},
\end{equation}
it follows that
\begin{equation}
\tag{2.6} i - (q + 1)t_i \in A(q, \theta), \quad 1 \leq i \leq q.
\end{equation}

We have

\textbf{Theorem 2.1.} Let \(\theta \) be a primitive element in \(GF(q^2) \) and define the integers \(t_i \) for \(1 \leq i \leq q \) by (2.3) and \(A(q, \theta) \) by (2.5). Then we have
\begin{equation}
\tag{2.7} A(q, \theta) = \{ i - (q + 1)t_i \pmod{q^2 - 1} : 1 \leq i \leq q \}.
\end{equation}

\textbf{Proof.} With regard to (2.6) it remains to prove that the elements are distinct modulo \(q^2 - 1 \). If \(i - (q + 1)t_i \equiv j - (q + 1)t_j \pmod{q^2 - 1} \), then \(i \equiv j \pmod{q + 1} \) and we have \(i = j \) since \(1 \leq i, j \leq q \).

\textbf{Example 2.1.} Let \(q = 7 \) and \(\theta^2 = \theta - 3 \) (cf. Example 3.1 in [7]). We find \(u_1 = u_2 = 1, u_3 = 5, u_4 = 2, u_5 = 1, u_6 = 2, u_7 = 3 \) and, since \(v = 3, t_1 = t_2 = 0, t_3 = 5, t_4 = 2, t_5 = 0, t_6 = 2, t_7 = 3 \), which gives \(A(7, \theta) = \{1, 2, 5, 11, 31, 36, 38\} \) after sorting.

If \(c \) is relatively prime to \(q^2 - 1 \), then \(M_c(x) = cx \) defines a one-one mapping of the integers modulo \(q^2 - 1 \). For any integer \(t \) we define another one-one mapping \((\text{mod} \ q^2 - 1) \) by \(T_t(x) = x - (q + 1)t \).

\textbf{Theorem 2.2.} Let \(\theta \) and \(\theta_1 \) be primitive elements in \(GF(q^2) \) and \(\theta = \theta_1^c = u_\theta \theta_1 - v_\theta (u_c, v_c \in GF(q)), u_c = \theta_1^{(q+1)t} \). Then \(A(q, \theta_1) = T_t M_c A(q, \theta) \).

\textbf{Proof.} Let \(a \in A(q, \theta) \). Then we have \(\theta^a - \theta \in GF(q) \) and \(\theta_1^c - u_c \theta_1 \in GF(q) \). If we divide this by \(u_c \neq 0 \), we find that \(ca - (q + 1)t \in A(q, \theta_1) \) and \(T_t M_c A(q, \theta) = A(q, \theta_1) \) follows since both sets have \(q \) elements.

3. A CRITERION FOR PRIMITIVE QUADRATICS

I will prove a new criterion for a quadratic \(X^2 - uX + v \) over \(GF(p) \), \(p \) an odd prime, to be primitive, i.e., with a root \(\theta \), which is a primitive element in \(GF(p^2) \). I am looking for a criterion which is suitable for computations and faster than the one in Lemma 2.2. There is a criterion by Bose, Chowla and Rao, Theorem 3A in [2], which depends on cyclotomic polynomials. I do not think it is what I am looking for, but I have use of the \textit{integral order} of \(\alpha \in GF(p^2) \). It is the least positive number \(n \) for which \(\alpha^n \in GF(p) \). I found this notion in [2].

I will need polynomials \(Q_m(X) \) of degree \(m \geq 0 \) defined recursively by
\begin{align}
\tag{3.1} &Q_0(X) = 1, \quad Q_1(X) = X, \\
\tag{3.2} &Q_{m+1}(X) = XQ_m(X) - Q_{m-1}(X) \quad \text{when} \ m \geq 1.
\end{align}

\textbf{Lemma 3.1.} Let \(\alpha \) be a root of the irreducible quadratic \(X^2 - uX + v \) over \(GF(p) \) with \(u, v \neq 0 \). Write \(u^2/v = w \) and let \(n = 2(m + 1) \). Then \((\alpha^2/v)^n = 1 \) if and only if \(Q_m(w - 2) = 0 \).

\textbf{Proof.} We have \((\alpha^2 + v)^2 = u^2 \alpha^2 \). Hence \(\alpha^4 + v^2 = (u^2 - 2v) \alpha^2 \) and
\begin{equation}
\tag{3.3} (\alpha^2/v) + (v/\alpha^2) = w - 2.
\end{equation}

Write \(\alpha^2/v = \beta \) for brevity. Observe that \(\beta \neq \pm 1 \). Hence \(\beta^2 - 1 \neq 0 \).

Assume that \(\beta^n = 1, n = 2(m + 1) \). If we divide \(\beta^n - 1 = 0 \) by \(\beta^2 - 1 \neq 0 \) we find \(\beta^{2m} + \beta^{2m-2} + \cdots + 1 = 0 \). Divide this by \(\beta^m \). Now
\begin{equation}
\tag{3.4} \beta^m + \beta^{m-2} + \cdots + \beta^{-m} = 0.
\end{equation}
The left-hand side of (3.4) can be written as a polynomial in $\beta + \beta^{-1}$. In fact, it is $Q_m(\beta + \beta^{-1})$. For obviously $Q_1(X) = X, Q_2(X) = X^2 - 2$ and (3.2) follows since $(\beta + \beta^{-1})Q_m(\beta + \beta^{-1}) = (Q_{m+1} + Q_{m-1})(\beta + \beta^{-1})$. Since $\beta + \beta^{-1} = w - 2$ by (3.3), we have $Q_m(w - 2) = 0$.

Conversely, assume that $Q_m(w - 2) = 0$. Then, working backward, we find that $\beta^n = 1$.

Lemma 3.2. If $\alpha^m \in GF(p)$ and n is the integral order of α, then $n|m$.

Proof. Write $m = kn + r$, $0 \leq r < n$. Then $\alpha^r = \alpha^m(\alpha^n)^{-k} \in GF(p)$ and $r = 0$ follows by the definition of n.

Theorem 3.1. Consider a quadratic $X^2 - uX + v$ with $u, v \in GF(p)$, $v \neq 0$ and p an odd prime. Write $u^2/v = w$. The quadratic is primitive if and only if the following conditions are satisfied ((iv) or (iv'))

(i) v is primitive (mod p),
(ii) $w \not\equiv 0$ is a quadratic nonresidue (mod p),
(iii) $w - 4$ is a quadratic residue (mod p),
(iv) $Q_m(w - 2) \not\equiv 0$ (mod p) when $m \leq [(p + 1)/6] - 1$,
(iv') for all odd primes q dividing $p + 1$ $Q_m(q)(w - 2) \not\equiv 0$ (mod p), where $m(q) = (p + 1)/2q - 1$.

Proof. When we prove the necessity of one condition we may assume that the preceding ones are satisfied.

Condition (i) is necessary by Lemma 2.2(ii). Assume that (i) holds. Then v is nonsquare in $GF(p)$. It follows that w is nonsquare in $GF(p)$ ($u = 0$ is impossible). This gives (ii). A primitive quadratic is irreducible. Then the discriminant $u^2 - 4v$ must be nonsquare in $GF(p)$. If we divide by nonsquare v we will get a square by the rules. This is (iii).

Assume that the conditions (i)–(iii) are satisfied. The quadratic is then irreducible and we have $v = \theta^{p+1}$ by Lemma 2.1, where θ is a root.

Assume that $Q_m(w - 2) \equiv 0$ (mod p) for some $m \leq [(p + 1)/6] - 1$. By Lemma 3.1 we have $1 = (v/\theta^n) = \theta^{(p-1)n}$ with $n \leq (p + 1)/3$. This is impossible when θ is a primitive element in $GF(p^2)$. This gives (iv) and (iv').

Assume that (i)–(iii) and (iv') are satisfied. Let n be the integral order of θ. Since $\theta^{p+1} = v \in GF(p)$, $p + 1 = kn$ follows by Lemma 3.2.

Note that v is nonsquare in $GF(p)$ and $v = \theta^{p+1} = (\theta^a)^k$, $\theta^n \in GF(p)$. It follows that k is an odd integer. We claim that $k = 1$.

Assume that $k > 1$. Let q be an odd prime divisor of k. Then $\tilde{n} = (p + 1)/q$ will be a multiple of $n = (p + 1)/k$. Observe that $(v/\theta^2)^n = \theta^{(p-1)n}$ since $\theta^n \in GF(p)$. Then we have $(\theta^2/v)^{\tilde{n}} = 1$. By Lemma 3.1 it follows that $Q_m(q)(w - 2) \equiv 0$ (mod p), a contradiction to (iv'). Therefore $k = 1$ and $n = p + 1$.

We have proved that the integral order of θ is $p + 1$. I will prove that this implies that θ is primitive. If $N = \text{order}(\theta)$, then $\theta^N = 1$ and we have $n = N$ by Lemma 3.2, i.e., $p + 1 | N$. Write $N = (p + 1)a$ and we find that $1 = \theta^N = v^a$. Since v is primitive in $GF(p)$, it follows that $p + 1 | a$. Hence $N = p^2 - 1$, which was to be proved.

In calculations using a computer one could use (iv) and (3.1), (3.2). If the calculations are done by hand, then (iv') is better. In both cases start with a list L1 of all quadratic nonresidues (mod p). The length of this list is $(p - 1)/2$. Delete
from this list all integers \(w \) for which \(w - 4 \pmod{p} \) belongs to the list. Then we obtain a list \(L_2 \), which is about half as long (the length of \(L_2 \) is \((p + 1)/4 \) when \(-1\) is a quadratic nonresidue \(\pmod{p} \)) and \((p - 1)/4 \) when \(-1\) is a quadratic residue \(\pmod{p} \)). Then go to (iv) or (iv') and check the numbers in \(L_2 \). Suppose we have found a number \(w \), which satisfies all four conditions. Then find a primitive element \(\pmod{p} \) from a table and determine \(u \) such that \(u^2 \equiv vw \pmod{p} \). Then we have the coefficients \(u \) and \(v \) of a primitive polynomial. If we apply (iv) or (iv') to all numbers on the list \(L_2 \) we may determine all primitive quadratic polynomials.

It is easy to prove by induction over \(m \geq 1 \) that

\[
Q_m(X) = \sum_{i=1}^{\lfloor m/2 \rfloor} (-1)^i \binom{m-i}{i} X^{m-2i}.
\]

Example 3.1. Let \(p = 29 \). The odd primes dividing \(p+1 \) are 3 and 5. We find that \(m(3) = 4 \) and \(m(5) = 2 \). We have \(Q_3(X) = X^2 - 1 \), \(Q_4(X) = X^4 - 3X^2 + 1 \). The list of quadratic nonresidues is \(L_1 = \{2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27\} \). We delete all \(w \) for which \(w - 4 \) belongs to the list and find \(L_2 = \{3, 8, 10, 11, 17, 26, 27\} \). From \(L_2 \) we delete “3” since \(3 - 2 = 1 \) is a root of \(Q_2 \) and we delete “8” and “26” because 6 and 24 are roots of \(Q_4 \pmod{29} \). There remains: 10, 11, 17, 27, which satisfy conditions (ii), (iii) and (iv'). There are \(\varphi(28) = 12 \) primitive elements \(v \) in \(GF(29) \). Hence there are \(4 \cdot 12 \cdot 2 = 96 \) primitive polynomials (4 numbers \(w \), 12 numbers \(v \), and 2 numbers \(u \) for each combination of \(v \) and \(w \)). This gives 192 primitive elements in \(GF(29^2) \) in agreement with \(\varphi(29^2 - 1) = 192 \). If we choose \(w = 10 \) and \(v = 2 \), we find \(u = 7 \) (or \(-7\) and \(X^2 - 7X + 2 \) is a primitive polynomial \(\pmod{29} \)).

Corollary. If \(p = 2^k - 1 \) is a (Mersenne) prime or if \(p = 2q - 1 \) for an odd prime \(q \), then the conditions (i)–(iii) are necessary and sufficient for the quadratic \(X^2 - uX + v \) to be primitive.

Proof. In the first case (iv') is vacuously satisfied. In the second case \(m(q) = 0 \) and \(Q_0 = 1 \).

4. A Very Fast Construction

There is a new construction of \(B_2 \)-sequences by I. Z. Ruzsa in [6], Theorem 4.4, which gives \(B_2 \)-sequences of the size \(p - 1 \) for each odd prime \(p \). The computations are straightforward and therefore very fast. I have extended the construction by the introduction of a factor \(f \), an integer in \(1 \leq f < p - 1 \), which is relatively prime to \(p - 1 \). Let \(g \) be a primitive element \(\pmod{p} \) and define

\[
R(p, f) = \{pf + (p - 1)g^i \pmod{p(p - 1)} : 1 \leq i \leq p - 1\}.
\]

The integers of \(R(p, f) \) are smaller than \(p(p - 1) \).

Theorem 4.1. \(R(p, f) \) is a \(B_2 \)-sequence modulo \(p(p - 1) \).

Proof. Let \(pf(i + j) + (p - 1)(g^i + g^j) \equiv a \pmod{p(p - 1)} \) be the sum of two elements. Then we find

\[
g^i + g^j \equiv -a \pmod{p}
\]

and \(f(i + j) \equiv a \pmod{p - 1} \). Since \(f \) is relatively prime to \(p - 1 \), there is an integer \(h \) such that \(fh \equiv 1 \pmod{p - 1} \). It follows that \(i + j \equiv ah \pmod{p - 1} \) and we have
by Fermat’s little theorem
(4.3) \[g^i g^j \equiv g^{ah} \pmod{p}. \]

By (4.2) and (4.3) \(g^i \) and \(g^j \) are the roots of \(X^2 + aX + g^{ah} = 0 \) in \(GF(p) \).
Hence, \(g^i \) and \(g^j \) are unique and determine \(\{i, j\} \) uniquely.

If we replace the primitive element \(g \) by another primitive \(g^b \) we will get \(R(p, fd) \), where \(bd \equiv 1 \pmod{p - 1} \). If we multiply \(R(p, f) \) by an integer \(c \) relatively prime to \(p(p - 1) \) we get a translate of \(R(p, fc) \). Thus we have essentially only \(\phi(p - 1) \) \(B_2 \)-sequences for each prime \(p \). This “count” is much smaller than the count of the Bose-Chowla sequences \(A(p, \theta) \). The estimates for \(C \) using \(R(p, f) \) are worse than those of \(A(p, \theta) \).

References
7. Z. Zhang, *Finding finite \(B_2 \)-sequences with larger \(m - a_m^{1/2} \)*, Math. Comp. 63 (1994), 403–414. MR 94i:11109

Department of Mathematics, Royal Institute of Technology, S-100 44, Stockholm, Sweden
Current address: Turengård 18, S-17675 Järfalla, Sweden