Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Vortex method
for two dimensional Euler equations
in bounded domains with boundary correction


Author: Lung-an Ying
Journal: Math. Comp. 67 (1998), 1383-1400
MSC (1991): Primary 65M99; Secondary 35Q35, 76C05
DOI: https://doi.org/10.1090/S0025-5718-98-00970-3
MathSciNet review: 1474659
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The vortex method for the initial-boundary value problems of the Euler equations for incompressible flow is studied. A boundary correction technique is introduced to generate second order accuracy. Convergence and error estimates are proved.


References [Enhancements On Off] (What's this?)

  • 1. R. A. Adams, Sobolev Spaces, Academic Press, 1975. MR 56:9247
  • 2. S. Agmon, The $L_p$ approach to the Dirichlet problems, Anali della Scuola Sup. Pisa, 13, 1959, 405-448. MR 23:A2609
  • 3. S. Agmon A. Douglis and L.Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 17, 1959, 623-727. MR 23:A2610
  • 4. C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal., 22, 1985, 413-440. MR 86j:76016
  • 5. J. T. Beale and A. Majda, Vortex methods I: Convergence in three dimensions, Math. Comp., 39, 1982, 1-27. MR 83i:65069a
  • 6. J. T. Beale and A. Majda, Vortex methods II: Higher accuracy in two and three dimensions, Math. Comp., 39, 1982, 29-52. MR 83i:65069b
  • 7. C. Chiu and R. A. Nicolaides, Convergence of a higher-order vortex method for two dimensional Euler equations, Math. Comp., 51, 1988, 507-534. MR 84c:65117
  • 8. A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57, 1973, 785-796. MR 52:16280
  • 9. O. H. Hald, Convergence of vortex methods for Euler's equations, II, SIAM J. Numer. Anal., 16, 1979, 726-755. MR 81b:76015b
  • 10. O. H. Hald, Convergence of vortex methods for Euler's equations III, SIAM J. Numer. Anal., 24, 1987, 538-582. MR 88i:76003
  • 11. O. H. Hald and V. M. DelPrete, Convergence of vortex methods for Euler's equations, Math. Comp., 32, 1978, 791-809. MR 81b:76015a
  • 12. R. A. Nicolaides, Construction of higher order accurate vortex and particle methods, Appl. Numer. Math., 2, 1986, 313-320. MR 87k:65119
  • 13. P. A. Raviart, An analysis of particle methods, Lecture Notes in Mathematics vol. 1127, Springer-Verlag, 1985, 243-324. MR 87h:76010
  • 14. R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20, 1975, 32-43. MR 55:3573
  • 15. Lung-An Ying, Convergence of vortex methods for initial boundary value problems, Advances in Math. (China), 20, 1991, 86-102. MR 92b:65103
  • 16. Lung-An Ying, Convergence of vortex methods for three dimensional Euler equations in bounded domains, SIAM J. Numer. Anal., 32, 1995, 542-559. MR 96a:76082
  • 17. Lung-An Ying and P. Zhang, Fully discrete convergence estimates for vortex methods in bounded domains, SIAM J. Numer. Anal., 31, 1994, 344-361. MR 95b:65131
  • 18. Lung-An Ying and P. Zhang, Vortex Methods, Science Press, Bejing, 1997.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65M99, 35Q35, 76C05

Retrieve articles in all journals with MSC (1991): 65M99, 35Q35, 76C05


Additional Information

Lung-an Ying
Affiliation: Department of Mathematics, Peking University; Research Institute for Mathematical Sciences, Kyoto University
Address at time of publication: School of Mathematical Sciences, Peking University, Beijing, 100871, China
Email: yingla@sxx0.math.pku.edu.cn

DOI: https://doi.org/10.1090/S0025-5718-98-00970-3
Keywords: Vortex method, Euler equation, initial boundary value problem
Received by editor(s): March 22, 1996
Received by editor(s) in revised form: April 23, 1997
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society