The approximation power of moving least-squares

Author:
David Levin

Journal:
Math. Comp. **67** (1998), 1517-1531

MSC (1991):
Primary 41A45; Secondary 41A25

MathSciNet review:
1474653

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general method for near-best approximations to functionals on , using scattered-data information is discussed. The method is actually the moving least-squares method, presented by the Backus-Gilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives' approximations. For the interpolation problem this approach gives Mclain's method. The method is near-best in the sense that the local error is bounded in terms of the error of a local best polynomial approximation. The interpolation approximation in is shown to be a function, and an approximation order result is proven for quasi-uniform sets of data points.

**[Ab]**F. Abramovici, 1984**[BDL]**M. D. Buhmann, N. Dyn, and D. Levin,*On quasi-interpolation by radial basis functions with scattered centres*, Constr. Approx.**11**(1995), no. 2, 239–254. MR**1342386**, 10.1007/BF01203417**[BG1]**G. Backus and F. Gilbert, 1967**13**247-276.**[BG2]**G. Backus and F. Gilbert, 1968*The resolving power of gross Earth data*, Geophys. J.R. Astr. Soc.**16**169-205.**[BG3]**G. Backus and F. Gilbert,*Uniqueness in the inversion of inaccurate gross Earth data*, Philos. Trans. Roy. Soc. London Ser. A**266**(1970), no. 1173, 123–192. MR**0449460****[BS]**L. P. Bos and K. Šalkauskas,*Moving least-squares are Backus-Gilbert optimal*, J. Approx. Theory**59**(1989), no. 3, 267–275. MR**1027954**, 10.1016/0021-9045(89)90090-7**[DLR]**Nira Dyn, David Levin, and Samuel Rippa,*Data dependent triangulations for piecewise linear interpolation*, IMA J. Numer. Anal.**10**(1990), no. 1, 137–154. MR**1036653**, 10.1093/imanum/10.1.137**[Fa1]**Reinhard Farwig,*Rate of convergence of Shepard’s global interpolation formula*, Math. Comp.**46**(1986), no. 174, 577–590. MR**829627**, 10.1090/S0025-5718-1986-0829627-0**[Fa2]**Reinhard Farwig,*Multivariate interpolation of arbitrarily spaced data by moving least squares methods*, J. Comput. Appl. Math.**16**(1986), no. 1, 79–93. MR**856353**, 10.1016/0377-0427(86)90175-5**[Fr]**Richard Franke,*Scattered data interpolation: tests of some methods*, Math. Comp.**38**(1982), no. 157, 181–200. MR**637296**, 10.1090/S0025-5718-1982-0637296-4**[FrNi]**Richard Franke and Greg Nielson,*Smooth interpolation of large sets of scattered data*, Internat. J. Numer. Methods Engrg.**15**(1980), no. 11, 1691–1704. MR**593596**, 10.1002/nme.1620151110**[LS]**P. Lancaster and K. Salkauskas,*Surfaces generated by moving least squares methods*, Math. Comp.**37**(1981), no. 155, 141–158. MR**616367**, 10.1090/S0025-5718-1981-0616367-1**[Mc1]**D. H. McLain, 1974*Drawing contours from arbitrary data points*, Comput. J.**17**318-324.**[Mc2]**D. H. McLain,*Two dimensional interpolation from random data*, Comput. J.**19**(1976), no. 2, 178–181. MR**0431604****[Sh]**D. Shepard, 1968*A two dimensional interpolation function for irregularly spaced data*, Proc. 23th Nat. Conf. ACM, 517-523.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
41A45,
41A25

Retrieve articles in all journals with MSC (1991): 41A45, 41A25

Additional Information

**David Levin**

Affiliation:
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Email:
levin@math.tau.ac.il

DOI:
https://doi.org/10.1090/S0025-5718-98-00974-0

Received by editor(s):
September 7, 1995

Received by editor(s) in revised form:
September 4, 1996, and March 28, 1997

Article copyright:
© Copyright 1998
American Mathematical Society