The approximation power of moving leastsquares
Author:
David Levin
Journal:
Math. Comp. 67 (1998), 15171531
MSC (1991):
Primary 41A45; Secondary 41A25
MathSciNet review:
1474653
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A general method for nearbest approximations to functionals on , using scattereddata information is discussed. The method is actually the moving leastsquares method, presented by the BackusGilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives' approximations. For the interpolation problem this approach gives Mclain's method. The method is nearbest in the sense that the local error is bounded in terms of the error of a local best polynomial approximation. The interpolation approximation in is shown to be a function, and an approximation order result is proven for quasiuniform sets of data points.
 [Ab]
F. Abramovici, 1984 The Shepard interpolation as the best average of a set of data, Technical Report, TelAviv University.
 [BDL]
M.
D. Buhmann, N.
Dyn, and D.
Levin, On quasiinterpolation by radial basis functions with
scattered centres, Constr. Approx. 11 (1995),
no. 2, 239–254. MR 1342386
(96h:41038), http://dx.doi.org/10.1007/BF01203417
 [BG1]
G. Backus and F. Gilbert, 1967 Numerical applications of a formalism for geophysical inverse problems, Geophys. J.R. Astr. Soc. 13 247276.
 [BG2]
G. Backus and F. Gilbert, 1968 The resolving power of gross Earth data, Geophys. J.R. Astr. Soc. 16 169205.
 [BG3]
G.
Backus and F.
Gilbert, Uniqueness in the inversion of inaccurate gross Earth
data, Philos. Trans. Roy. Soc. London Ser. A 266
(1970), no. 1173, 123–192. MR 0449460
(56 #7763)
 [BS]
L.
P. Bos and K.
Šalkauskas, Moving leastsquares are BackusGilbert
optimal, J. Approx. Theory 59 (1989), no. 3,
267–275. MR 1027954
(91a:41003), http://dx.doi.org/10.1016/00219045(89)900907
 [DLR]
Nira
Dyn, David
Levin, and Samuel
Rippa, Data dependent triangulations for piecewise linear
interpolation, IMA J. Numer. Anal. 10 (1990),
no. 1, 137–154. MR 1036653
(91a:65022), http://dx.doi.org/10.1093/imanum/10.1.137
 [Fa1]
Reinhard
Farwig, Rate of convergence of Shepard’s
global interpolation formula, Math. Comp.
46 (1986), no. 174, 577–590. MR 829627
(88a:65015), http://dx.doi.org/10.1090/S00255718198608296270
 [Fa2]
Reinhard
Farwig, Multivariate interpolation of arbitrarily spaced data by
moving least squares methods, J. Comput. Appl. Math.
16 (1986), no. 1, 79–93. MR 856353
(87j:65013), http://dx.doi.org/10.1016/03770427(86)901755
 [Fr]
Richard
Franke, Scattered data interpolation: tests of
some methods, Math. Comp.
38 (1982), no. 157, 181–200. MR 637296
(82m:65008), http://dx.doi.org/10.1090/S00255718198206372964
 [FrNi]
Richard
Franke and Greg
Nielson, Smooth interpolation of large sets of scattered data,
Internat. J. Numer. Methods Engrg. 15 (1980), no. 11,
1691–1704. MR 593596
(82d:65011), http://dx.doi.org/10.1002/nme.1620151110
 [LS]
P.
Lancaster and K.
Salkauskas, Surfaces generated by moving least
squares methods, Math. Comp.
37 (1981), no. 155, 141–158. MR 616367
(83c:65015), http://dx.doi.org/10.1090/S00255718198106163671
 [Mc1]
D. H. McLain, 1974 Drawing contours from arbitrary data points, Comput. J. 17 318324.
 [Mc2]
D.
H. McLain, Two dimensional interpolation from random data,
Comput. J. 19 (1976), no. 2, 178–181. MR 0431604
(55 #4601)
 [Sh]
D. Shepard, 1968 A two dimensional interpolation function for irregularly spaced data, Proc. 23th Nat. Conf. ACM, 517523.
 [Ab]
 F. Abramovici, 1984 The Shepard interpolation as the best average of a set of data, Technical Report, TelAviv University.
 [BDL]
 M.D. Buhmann, N. Dyn and D. Levin, 1995 On quasiinterpolation by radial basis functions with scattered centers, Constructive Approximation 11 239254. MR 96h:41038
 [BG1]
 G. Backus and F. Gilbert, 1967 Numerical applications of a formalism for geophysical inverse problems, Geophys. J.R. Astr. Soc. 13 247276.
 [BG2]
 G. Backus and F. Gilbert, 1968 The resolving power of gross Earth data, Geophys. J.R. Astr. Soc. 16 169205.
 [BG3]
 G. Backus and F. Gilbert, 1970 Uniqueness in the inversion of inaccurate gross Earth data, Philos. Trans. Roy. Soc. London, Ser. A, 266 123192. MR 56:7763
 [BS]
 L. Bos and K. Salkauskas, 1989 Moving leastsquares are BackusGilbert optimal, J. Approx. Theory 59 267275. MR 91a:41003
 [DLR]
 N. Dyn, D. Levin and S. Rippa, 1990 Data dependent triangulation for piecewise linear interpolation, IMA J. Numer. Anal. 10 137154. MR 91a:65022
 [Fa1]
 R. Farwig, 1986 Rate of convergence of Shepard's global interpolation formula, Math. Comp. 46, No. 174, 577590. MR 88a:65015
 [Fa2]
 R. Farwig, 1986 Multivariate interpolation of arbitrarily spaced data by moving least squares methods, J. Comput. Appl. Math. 16 7993. MR 87j:65013
 [Fr]
 R. Franke, 1982 Scattered data interpolation: Tests of some methods, Math. Comp. 38, No. 157, 181200. MR 82m:65008
 [FrNi]
 R. Franke and G. Nielson, 1980 Smooth interpolation of large sets of scattered data, Internat. J. Numer. Methods Engrg. 15 16911704. MR 82d:65011
 [LS]
 P. Lancaster and K. Salkauskas, 1981 Surfaces generated by moving least squares methods, Math. Comp. 37, no. 155, 141158. MR 83c:65015
 [Mc1]
 D. H. McLain, 1974 Drawing contours from arbitrary data points, Comput. J. 17 318324.
 [Mc2]
 D. H. McLain, 1976 Two dimensional interpolation from random data, Comput. J. 19 178181. MR 55:4601
 [Sh]
 D. Shepard, 1968 A two dimensional interpolation function for irregularly spaced data, Proc. 23th Nat. Conf. ACM, 517523.
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
41A45,
41A25
Retrieve articles in all journals
with MSC (1991):
41A45,
41A25
Additional Information
David Levin
Affiliation:
School of Mathematical Sciences, TelAviv University, TelAviv 69978, Israel
Email:
levin@math.tau.ac.il
DOI:
http://dx.doi.org/10.1090/S0025571898009740
PII:
S 00255718(98)009740
Received by editor(s):
September 7, 1995
Received by editor(s) in revised form:
September 4, 1996, and March 28, 1997
Article copyright:
© Copyright 1998
American Mathematical Society
