Advances in aliquot sequences
Authors:
Manuel Benito and Juan L. Varona
Journal:
Math. Comp. 68 (1999), 389393
MSC (1991):
Primary 11Y55; Secondary 11A25
MathSciNet review:
1489967
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we describe some advances in the knowledge of the behavior of aliquot sequences starting with a number less than . For some starting values, it is shown for the first time that the sequence terminates. The current record for the maximum of a terminating sequence is located in the one starting at 4170; it converges to 1 after 869 iterations getting a maximum of 84 decimal digits at iteration 289.
 1.
E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France 18 (188788), 128129.
 2.
L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math. 44 (1913), 264296.
 3.
P.
Erdős, On asymptotic properties of aliquot
sequences, Math. Comp. 30
(1976), no. 135, 641–645. MR 0404115
(53 #7919), http://dx.doi.org/10.1090/S00255718197604041158
 4.
Andrew
W. P. Guy and Richard
K. Guy, A record aliquot sequence, mathematics (Vancouver,
BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc.,
Providence, RI, 1994, pp. 557–559. MR 1314890
(95k:11164)
 5.
Richard
K. Guy, Unsolved problems in number theory, 2nd ed., Problem
Books in Mathematics, SpringerVerlag, New York, 1994. Unsolved Problems in
Intuitive Mathematics, I. MR 1299330
(96e:11002)
 6.
Richard
K. Guy and J.
L. Selfridge, What drives an aliquot
sequence?, Math. Comput. 29 (1975), 101–107.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0384669
(52 #5542), http://dx.doi.org/10.1090/S0025571819750384669X
Richard
K. Guy and J.
L. Selfridge, Corrigendum to: “What drives an
aliquot sequence?” [Math. Comp. 29 (1975), 101–107; MR 52
#5542], Math. Comp. 34
(1980), no. 149, 319–321. MR 551309
(81f:10008), http://dx.doi.org/10.1090/S00255718198005513098
 1.
 E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France 18 (188788), 128129.
 2.
 L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math. 44 (1913), 264296.
 3.
 P. Erd\H{o}s, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976), 641645. MR 53:7919
 4.
 A. W. P. Guy and R. K. Guy, A record aliquot sequence, in Computation 19431993: A HalfCentury of Computational Mathematics (Vancouver, 1993), Proc. Sympos. Appl. Math. 48 (1994), Amer. Math. Soc., Providence, RI, 1994, pp. 557559. MR 95k:11164
 5.
 R. K. Guy, Unsolved Problems in Number Theory (2nd ed.), SpringerVerlag, 1994. MR 96e:11002
 6.
 R. K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comp. 29 (1975), 101107. Corrigendum, ibid. 34 (1980), 319321. MR 52:5542; MR 81f:10008
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
11Y55,
11A25
Retrieve articles in all journals
with MSC (1991):
11Y55,
11A25
Additional Information
Manuel Benito
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain
Email:
mbenito@dmc.unirioja.es
Juan L. Varona
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain
Email:
jvarona@dmc.unirioja.es
DOI:
http://dx.doi.org/10.1090/S0025571899009916
PII:
S 00255718(99)009916
Keywords:
Aliquot sequences,
sum of divisors,
perfect number,
amicable pair,
sociable numbers,
aliquot cycles
Received by editor(s):
October 25, 1996
Received by editor(s) in revised form:
February 26, 1997, and July 24, 1997
Additional Notes:
Research of the second author supported by grant PB930228C0202 of the DGICYT
Article copyright:
© Copyright 1999 American Mathematical Society
