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NON-PRIMITIVE NUMBER FIELDS OF DEGREE EIGHT
AND OF SIGNATURE (2, 3), (4, 2) AND (6, 1)

WITH SMALL DISCRIMINANT

SCHEHRAZAD SELMANE

Abstract. We give the lists of all non-primitive number fields of degree eight
having two, four and six real places of discriminant less than 6688609, 24363884
and 92810082, respectively, in absolute value. For each field in the lists, we give
its discriminant, the discriminant of its subfields, a relative polynomial gener-
ating the field over one of its subfields and its discriminant, the corresponding
polynomial over Q, and the Galois group of its Galois closure.

1. Introduction

It is well known that, in degree eight, the minima for discriminants are only
known for signatures (0, 4) [7] and (8, 0) [16]. For the other cases only partial
tables of euclidean fields for the signatures (2, 3) and (4, 2) [11] are available.

In this work, we give the table of non-primitive number fields of degree 8, of
signature (2, 3) (resp. (4, 2), (6, 1)) and of discriminant majorized, in absolute value,
by 6688609 (resp. 24363884, 92810082).

To establish these lists, we have explicitly constructed all non-primitive number
fields of degree 8, of desired signatures and of discriminant within the previously
chosen bounds, each field being defined by a polynomial with coefficients chosen
in a convenient subfield. We have followed the method of explicit construction of
relative extensions described in [12].

This paper is organized into several sections. Section 2 provides the notations
and mathematical basis for the expression of relative extensions. In Section 3, we
justify the choice of the bounds, which choice is related to lower bounds for discrim-
inants with Odlyzko-Poitou-Serre local corrections [18]. The consequences of these
lower bounds are gathered in a lemma and bring important simplifications in the
computations. Section 4 is devoted to the description of computations which allow
us to find by the number-geometric method all the non-primitive extensions of de-
gree 8, of signatures (2, 3), (4, 2) and (6, 1) and of absolute discriminant smaller than
the previously chosen bounds. We prove the existence of two non-isomorphic fields
of discriminant −5365963 and two non-isomorphic fields of discriminant −6647387.
These are the only fields in the limits of the given tables which are not characterized
by their discriminant. Finally, we study the Galois group of the Galois closure of
each field in the tables.

Received by the editor March 1, 1995 and, in revised form, September 11, 1996.
1991 Mathematics Subject Classification. Primary 11R11, 11R16, 11R29, 11Y40.
Key words and phrases. Quadratic fields, quartic fields, relative extensions, discriminant.

c©1999 American Mathematical Society

333

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



334 SCHEHRAZAD SELMANE

2. Notations

If K is a number field of degree n and of signature (r, s), we denote by dK its dis-
criminant, by ZK its ring of integers and by J(K) the set of distinct
Q-isomorphisms of K into C. For every ξ in K, we denote by ξ(1), · · · , ξ(r) its
real conjugates, and by ξ(r+1), ξ(r+2) = ξ(r+1), . . . , ξ(n−1), ξ(n) = ξ(n−1) its complex
conjugates, and we set Tj(ξ) =

∑n
i=1 |ξ(i)|j .

Let K be a number field of degree n, an extension of degree m of a subfield F
of degree n′. For σ ∈ J(F ) we set

Jσ(K) = {τ ∈ J(K) : τ/F = σ}.
Clearly,

J(K) =
⋃

σ∈J(F )

Jσ(K).

For θ an integer of K we define

Trσ,K/F (θ) =
∑

τ∈Jσ(K)

τ(θ).

If we assume K = F (θ), then θ is a root of a polynomial P (x) ∈ ZF [x],

P (x) = xm + a1x
m−1 + · · ·+ am.

If we denote by Pσ(x), σ ∈ J(F ), the polynomial

Pσ(x) = xm + σ(a1)xm−1 + · · ·+ σ(am),

then the polynomial f(x) =
∏

σ∈J(F ) Pσ(x) has integer coefficients and is either
irreducible or a power of an irreducible polynomial. Let θ1, . . . , θn be the roots of
f(x) ordered so that θ1, . . . , θm are the roots of P (x). For each natural number j
we consider the power sums

sj = sj(θ) =
m∑

i=1

θj
i .

Clearly,

n′∑
i=1

|s(i)
j | ≤

n∑
i=1

|θi|j (2 ≤ j ≤ m).

Let δ be the relative discriminant of K over F , and N the absolute norm in the
extension F/Q. The discriminants of K and F are then related by

|dK | = |dF |mN(δ),(1)

and if η denotes the number of complex places of K whose restriction to a place of
F is real, a result of J. Martinet [13] asserts that

N(δ) ≡ 0 or (−1)η (mod 4).(2)

We recall that a relative discriminant is the product of an integer ideal δ0 of F by
the set of infinite places ramified in K/F : δ = δ0∞1 · · ·∞η.
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3. Lower bounds for discriminants

The tables of lower bounds for discriminants [5] indicate that the absolute value
of the discriminant of a number field of degree 8 and of signature (2, 3) (resp. (4, 2),
(6, 1)) is larger than 3404641 (resp. 11666965, 42098660). This lower bound, which
is obtained in the absence of all hypotheses on the decomposition of prime ideals in
the extension K/Q, can be improved by taking into account the local corrections
corresponding to small prime numbers [18]. Assuming that the prime number p is
divisible by a prime ideal of K of norm pf, we find the following lower bounds for
each fixed signature.

Lower bounds

p f (2,3) (4,2) (6,1)
2 1 11725962 42765015 162569966
2 2 6688609 24363884 92810082
3 1 8336752 30393069 115852707
3 2 4160401 14972957 52529001
5 1 5726300 20829049 79259702
7 1 4682933 16957023 64309248

In order to find all the number fields K of degree 8, of signature (2, 3) (resp.
(4, 2), (6, 1)) and of absolute discriminant dK such that |dK | ≤ M, we choose
M = 6688609 (resp. 24363884, 92810082). This choice is justified by the fact that
we can apply the following lemma to these fields.

Lemma 1. Let K be a number field of degree 8 over Q, of signature (2, 3) (resp.
(4, 2), (6, 1)) with |dK | ≤ M. Let θ be an integer of K of absolute norm a. If
a = 2x3yc, c prime with 2 and with 3, then x = 0 or x ≥ 3, and y = 0 or y ≥ 2.

This lemma is an immediate consequence of the lower bounds given above.

4. Description of the computations

From now on, K denotes a non-primitive number field of degree 8, of signature
(r, s) = (2, 3) (resp. (4, 2), (6, 1)) and of discriminant dK such that |dK | ≤ M. The
field K being non-primitive, it contains either a quartic subfield or a quadratic
subfield. As we are concerned with the construction of lists of the non-primitive
fields with |dK | ≤ M, we must consider all the quartic subfields F (resp. quadratic
subfields L) whose signature (r′, s′) is compatible with that of K, that is to say,
s ≥ 2s′ (resp. s ≥ 4s′) and whose discriminant satisfies |dF | ≤ M1/2 (resp. |dL| ≤
M1/4).

a) Quadratic extensions of quartic subfields. Each relative quadratic ex-
tension of a quartic field may be defined by a polynomial of second degree with
coefficients in the subfield. In this section we develop a method of computation
which allows us to construct explicitly all the relative polynomials

P (x) = x2 + bx + c ∈ ZF [x]

of which one of the roots θ defines an octic field K of signature (r, s) such that
K = F (θ). The basic tool of this method is a generalization of the Hunter-Pohst
theorem given by J. Martinet in [12].
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Theorem 1. There exists an integer θ ∈ K, θ 6∈ F , such that K = F (θ) and
8∑

i=1

|θ(i)|2 ≤ 1
2

∑
σ∈J(F )

|Trσ,K/F (θ)|2 + B,(3)

where B = (M/4|dF |)1/4. This inequality is also valid for all elements of K of the
form θ + γ or −θ, where γ is any integer of F .

To construct all polynomials P (x) of which one root θ generates one of the desired
fields K over F , we will work in the field F . We assume that the discriminant dF

and an integral basis B = {w1 = 1, w2, w3, w4} of F are known.
The knowledge of the ordinary and the strict class numbers of F as well as the

use of certain simplifications and techniques gathered in the following lemma allow
us to exclude several quartic fields.

Lemma 2. For |dK | < M and N(δ0) > 1 we have
(i) Max{7, 3404641|dF |−2} ≤ N(δ0) ≤ 6688609|dF |−2 (resp.

Max{5, 11666965|dF |−2} ≤ N(δ0) ≤ 24363884|dF |−2,
Max{7, 42098660|dF |−2} ≤ N(δ0) ≤ 92810082|dF |−2).

(ii) If N(δ0)=5u with (u, 5) = 1, then |dK |≥5726300 (resp. 20829049, 79259702).
(iii) If N(δ0)=7u with (u, 7) = 1, then |dK |≥4682933 (resp. 16957023, 64309248).
(iv) N(δ0) 6= 3u with (u, 3) = 1.
(v) If δ0 =

∏t
i=1 ℘ei

i , then ei = 1 for N(℘i) ≡ 1 (mod 2).
(vi) N(δ0) is odd for the signatures (2, 3) and (6, 1).

Proof. The assertions (i)–(iv) come from lower bounds for discriminants with local
corrections and from formulas (1) and (2) for (i). The extension K/F is of relative
degree 2; the ramification of a prime ideal ℘ in the extension K/F is either wild
or tame according to whether N(℘) is even or odd. If N(℘) ≡ 1 (mod 2), then the
ramification is tame; hence ei = 1 and assertion (v) holds. To show assertion (vi),
we notice that if N(℘) = 2i (1 ≤ i ≤ 3) then the extension K/Q contains either an
ideal of norm 2 or an ideal of norm 4; this case is excluded according to the lower
bounds for discriminants with local corrections. Finally, if 2 remains inert in F/Q,
since the ramification in K/F is wild, we should have N(δ0) = 28l, which leads to
|dF | ≤ 161 (resp. |dF | ≤ 602). However, there exist no fields of signature (4, 0) or
(2.1) (resp. (4, 0)) with discriminant |dF | smaller than 275 (resp. 725) [9, 10].

Construction of relative polynomials. The second part of Theorem 1 shows
that the coefficient b of P (x) may be chosen of the form

b = x1w1 + · · ·+ x4w4 with xi ∈ {0, 1} for i = 1, . . . , 4.

We notice that for a fixed value of b, the value of T2(θ) is majorized by a real
constant which only depends on the chosen value of b. On the other hand, if the
root θ of P (x) is a generator of the extension K/F , θ + γ is also a generator of
K/F for all γ in ZF ; additionally (3) remains valid if we replace θ by θ + γ, since
TrK/F (θ + γ) = −b + 2γ := −β. If we represent β by means of the basis B of F

in the form β =
∑4

i=1 βiwi, then T2(β) becomes a positive definite quadratic form
q(ν) = νAνt in the coefficients β1, . . . , β4 (ν := (β1, . . . , β4)),where A = (mij) and

mij =
4∑

k=1

w
(k)
i w

(k)
j (1 ≤ i, j ≤ 4).
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There exists at least one choice of γ such that T2(β) will be minimum. We obtain
the possible β, first using the algorithm A [17] to decompose the matrix A into a
sum of squares by the Cholesky method, then using the algorithm B [17] to compute
all the solutions β subject to q(ν) ≤ E (E := T2(b)). Among the β values, we only
keep those which verify β ≡ b (mod 2ZF ). We will later denote by b the value of β
for which T2(β) is minimum, and we set C = 1

2T2(b) + B.
Once a convenient value of b is determined, we determine the possible values

of c from the second relative symmetric function s2 =
∑4

i=1 yiwi and from the
inequalities

4∑
i=1

|s(i)
2 |2 ≤ T2(θ)2 ≤ C2.

The possible values of the integer s2 are obtained by letting y1, . . . , y4 run through
the integer values for which q(y1, . . . , y4) ≤ C2 and such that s2 ≡ b2 (mod 2ZF ).
For each value of s2 obtained in this way, we evaluate in ZF the integer b2 − s2.
If all the coordinates of the latter are even, we then obtain a value of c; namely,
c = (b2 − s2)/2.

We start by verifying whether P (x) can define a field of the desired signature.
This question is solved by simply examining the sign of the discriminant ∆ = b2−4c
of each real conjugate of P (x). We considerably reduced the number of polynomials
P (x) to be considered by using the inequality

4∑
i=1

|∆(i)| ≤ 2B,

which follows from inequality (3) and from the equality

|θ1 + θ2|2 + |θ1 − θ2|2 = 2(|θ1|2 + |θ2|2),
where θ1, θ2 are complex numbers.

We compute L = |N(∆)|; if L is squarefree, the relative discriminant δ has a
norm L and the computation of L permits the elimination of all polynomials with
L > M/d2

F . The computation of the roots of the four conjugate polynomials is only
necessary for r = 4 and r′ = 2 to test the irreducibility of the polynomial P . For
r = 4 and r′ = 4, the polynomials which are squares of irreducible fourth degree
polynomials are eliminated.

For the computation of the discriminant of K, we have first determined the
relative discriminant δ, by using a theorem on ramification in Kummer extensions,
then deduced the value dK = (−1)sdF N(δ). Let us now mention two examples of
computation of δ and dK .

• Let K = F (θ) and F = Q(ρ), where θ is a root of

P (x) = x2 + (−1 + ρ2 − ρ3)x + (−ρ + ρ2)

and ρ is a root of

g(x) = x4 − 2x3 + 2x2 − x− 1.

We have dF = dg = −475, dP ≡ 3ρ−3ρ2+ρ3 (mod g(ρ)) and N(dP ) = −19.
Then g(x) ≡ (x + 12)(x + 6)(x + 9)2 (mod 19) and dP = ρ(ρ + 6)(ρ + 10)
(mod 19). It follows that the relative discriminant δ is equal to ℘∞1, where ℘
is the prime ideal (19, ρ+6) of F over 19 and dK = −(−475)219 = −4286875.
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• Let K = F (θ) and F = Q(ρ) where θ is a root of P (x) and ρ a root of g(x):

P (x) = x2 + (−ρ− ρ2 + ρ3) and g(x) = x4 − x3 − 1.

We have dF = dg = −283, dP = 4(ρ + ρ2 − ρ3) and N(dP ) = 256. Then
2ZF = ℘, with N(℘) = 24 and ν℘(dP ) = 2. Notice also that

P (x) ≡ (x + ρ3 + 1)2 (mod ℘).

We can obtain an (x + ρ3 + 1)-development of the polynomial P (x) as

P (x) = (x + ρ3 + 1)2 + (−2ρ3 − 2)(x + ρ3 + 1) + (4ρ3 + 2).

All the coefficients are divisible by ℘ and have a valuation equal to 1, proving
that the polynomial is an Eisenstein polynomial and ℘ is fully ramified in
K/F . Then δ = ℘2 and dK = (−283)2256 = 20502784.

To decide if two equal discriminants correspond to the same field up to an iso-
morphism, we determine whether the relative ideal discriminants are conjugates.
We obtain the following results.

Proposition 1. Within the limits of Table 1, there exist, for the signature (2, 3),
two nonisomorphic fields of discriminant −5365963 and two nonisomorphic fields
of discriminant −6647387. All other fields in Table 1 are characterized by their
discriminant.

A second proof of this proposition can be given by decomposing a suitable prime
number in each of the two fields with the same discriminant.

Denoting by K1, K2 the two fields with the same discriminant in the order in
which they appear in the table, and by f1, f2 the respective polynomials defining
these fields, we obtain the following decompositions, where dK is fixed:

• dK = −5365963:

f1(x)=x8 + 3x7 + x6 − x5 + 4x4 + 4x3 + x2 + x− 1, 13ZK1 =℘1℘
′
1℘6,

f2(x)=x8 − 4x7 + 8x6 − 13x5 + 15x4 − 13x3 + 8x2 − 4x + 1, 13ZK2 =℘2℘3℘
′
3;

• dK = −6647387:

f1(x)=x8 − 4x7 + 5x6 − 4x5 + 4x4 − x3 − x2 − 1, 11ZK2 =℘1℘
′
1℘3℘

′
3,

f2(x)=x8 − 2x6 + x5 + 5x4 − 7x3 + 3x2 + x− 1, 11ZK1 =℘2℘6.

We indicate, in the list below, the polynomials defining the quartic fields used
in the computations. These polynomials are obtained by applying the POLRED
algorithm [4] to the polynomials given in the tables of Godwin [9, 10]. We note
that the computational time when using these polynomials is very low as compared
with the computational time when using polynomials taken directly from Godwin’s
tables.

x4 − x3 − 1 −283 x4 − x3 + 2x− 1 −275 x4 − x3 − 3x2 + x + 1 725
x4 − x3 + x2 + x− 1 −331 x4 − x2 − 1 −400 x4 − x3 − 4x2 + 4x + 1 1125
x4 − x3 + x2 − x− 1 −563 x4 − 2x3 + x2 + 2x− 1 −448 x4 − 6x2 + 4 1600
x4 − x3 − 2x + 1 −643 x4 − 2x3 + 2x2 − x− 1 −475 x4 − 7x2 + 11 4400
x4 − 2x3 + 3x2 − 1 −976

Among the k conjugate extensions found we only give one conjugate field for
each subfield.
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b) Quartic extensions of quadratic fields. Let K be an octic number field,
an extension of degree 4 of a quadratic subfield L = Q(

√
∂). Theorem 2.8 of [12]

asserts that there exists an integer element θ ∈ K, θ 6∈ L, such that

8∑
i=1

|θ(i)|2 ≤ (α2
1 + β2

1dL)/8 + B,(4)

where B = (4M/3dL)1/6 and Trσ,K/L(θ) = (α1 + β1

√
dL)/2 is an integer of L.

The field L(θ) is a non-trivial extension of L and thus an intermediate field
between L and K. Since the study of the fields K containing a subfield of degree
4 over Q has already been made in Section 4.a, we can stipulate without loss of
generality that θ is a primitive element of K/Q. Let f(x) ∈ Z[x] be the minimal
polynomial of the integer θ over Q. Then f(x) decomposes in ZL[x] into a product
of two conjugate irreducible polynomials

P (x) = x4 + a1x
3 + · · ·+ a4 and P ′(x) = x4 + σ(a1)x3 + · · ·+ σ(a4).

Notice that each integer γ in L can be written as γ = (α + β
√

dL)/2 with α ≡ β
(mod 2) for d ≡ 1 (mod 4) and α even for d ≡ 2 or 3 (mod 4). We denote this
integer by the couple (α, β).

The fact that the inequality (4) remains valid if we replace θ by −θ or θ + λ
for an arbitrary λ ∈ ZL and the fact that P and P ′ define the same field (up to
conjugacy) allow us to choose (α1, β1) from the set

{(0, 0), (1, 1), (2, 0), (2, 2), (3, 1), (4, 0), (4, 2)} for d ≡ 1 (mod 4)

and from

{(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2), (4, 0), (4, 1), (4, 2)} for d≡2 or 3 (mod 4).

For each of these pairs, we start by computing an upper bound for T2(θ) by (4).
We then compute the upper bounds for Tj(θ) with j = −1, 3, 4 using Theorem 4
of [15]. Finally, we evaluate the other coefficients by induction with the help of
Newton’s formulas. The values of sj = (αj + βj

√
dL)/2 must satisfy not only the

inequalities

|sj |+ |σ(sj)| = max{|αj|, |βj |
√

dL} ≤ Tj(θ) (2 ≤ j ≤ 4)

but also the congruences

sj ≡ −
j−1∑
i=1

aisj−i (mod jZL) (2 ≤ j ≤ 4).

In spite of the fact that we have obtained all the polynomials of interest to us,
we can further shorten the list of these polynomials. Indeed, the inequality

|N(a4)| ≤ (T2(θ)/8)4,

which follows from the inequality between arithmetic and geometric means, and
the fact that the values taken by N(a4) must be compatible with the conclusions
of Lemma 1, makes it possible to reduce considerably the number of polynomials.
The inequality

|e|+ |σ(e)| ≤ 4B,
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where e = 3a2
1 − 8a2, which follows from the inequality (4) and from∣∣∣∣∣∣(k − 1)

(
k∑

i=1

θi

)2

− 2k
∑

1≤i≤j≤k

θiθj

∣∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

θi

∣∣∣∣∣
2

= k

k∑
i=1

|θi|2,

where θ1, . . . , θk are complex numbers, allows the elimination of several values of
a2. Furthermore, for the signature (6, 1), since one of the relative polynomials must
have only real roots, its coefficients must satisfy Newton’s inequalities. So either
we have

3a2
1 − 8a2 ≥ 0, 4a2

2 − 9a1a3 ≥ 0, 3a2
3 − 8a2a4 ≥ 0,

or the conjugates in L of these numbers are all positive or null.
Once all the coefficients of P (x) are obtained, we start by ensuring that we have

|σ(a3)a4 + a3σ(a4)| ≤ N(a4)T−1(θ).

We verify that P has only integer coefficients when β1 = 0. We compute the
relative discriminant dP of the relative polynomial from the formula

27dP = 4(a2
2 − 3a1a3 + 12a4)3

− (2a3
2 − 72a2a4 + 27a2

1a4 − 9a1a2a3 + 27a2
3)

2.

We then make sure that the sign of N(dP ) coincides with that of (−1)η. If N(dP ) is
squarefree, then we must have |N(dP )| ≤ M/d4

L. We notice that for r = 6, denoting
by P the relative polynomial of positive relative discriminant, we have

4∑
i=1

|1 + θi|2 = 4± 2s1 + s2.

The use of the inequality between arithmetic and geometric means yields

|P (∓1)| = [(4± 2s1 + s2)/4]2,

giving an important reduction of the number of polynomials to consider.
Some simplifications can also be made for a1 = 0; for β1 or for a1 = 0 and a3 = 0.

To solve the question of signature of the field we have used Sturm’s theorem only for
the relative polynomials with positive discriminants. We have later computed the
roots, on the one hand to estimate

∑8
i=1 |θi|2 (which we compare with the bound

on T2(θ) given by geometric methods, allowing the elimination of a great number
of polynomials) and on the other hand to test the irreducibility of the polynomial
P (x) in ZL[x]. The test consists of determining whether there exist divisors of
degree 1 or 2 of P (x) in ZL[x]. For r = 6 (resp. 2) we have 8 (resp. 0) possibilities
for the factors of degree 1 and 6 (resp. 2) possibilities for the factors of degree 2.
For r = 4 we have 4 (resp. 2) tests if dP < 0 and no (resp. 6) tests if dP > 0
for the factors of degree 1 (resp. 2). If P is irreducible in ZL[x], then the same is
true for f(x) in Z[x], and we have K = Q(θ) and [K : L] = 4. We only need to
compute the discriminant dK to see if K lies within the limits of the search. When
N(dP ) is squarefree, we immediately get dK = d4

LN(dP ); otherwise we compute the
discriminant of the field K by means of the Zassenhaus “ROUND 2” algorithm in
a version due to D. Ford, implemented in GP PARI [2]. As we obtained, in general,
more than one polynomial for a given discriminant, we have used the POLRED
algorithm [4] to decide whether or not the polynomials define the same field up to
isomorphism.
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Table 2

dK dL a1 a2 a3 a4 dP N(dP )

(r, s) = (2, 3)

−4286875 5 (−1,−1) (−3, 1) (2, 0) (3,−1) (−3097, 1387) −6859

−4461875 5 (−1,−1) (2, 0) (3,−1) (1,−1) (343,−171) −7139
−4616192 8 (−2, 0) (2, 1) (−2, 0) (2, 0) (−162, 62) −1127
−4960000 5 (−2,−2) (4, 2) (−2,−2) (1, 1) (−224, 128) −7936
−5369375 5 (2, 0) (−3, 1) (−1, 1) (3,−1) (194,−120) −8591
−5756875 5 (−1,−1) (−1, 1) (0, 0) (1,−1) (91,−95) −9211
−5781875 5 (−1,−1) (2, 0) (−1,−1) (2, 0) (79,−93) −9251

−5856875 5 (−1,−1) (−3, 1) (−1, 1) (2, 0) (19, 87) −9371

(r, s) = (4, 2)

15243125 5 (−1,−1) (−2, 0) (2, 0) (3,−1) (1999,−883) 24389

16643125 5 (−1,−1) (−1, 1) (−1, 1) (−2, 0) (−369, 77) 26629
17238125 5 (−1,−1) (−2, 0) (1, 1) (−1, 1) (−1393, 605) 27581
17318125 5 (−2,−2) (−2, 0) (5, 3) (−1,−1) (7219, 3225) 27709
19268125 5 (−4, 0) (−1, 1) (1,−1) (3,−1) (−1089, 461) 30829
19360000 5 (0, 0) (−3, 1) (0, 0) (2, 0) (368, 48) 30976
20268125 5 (−2,−2) (−1, 1) (1, 1) (−1,−1) (−3029,−1345) 32429
20493125 5 (−1,−1) (1, 1) (1,−1) (1,−1) (−409, 85) 32789
20993125 5 (0, 0) (−3, 1) (1, 1) (1,−1) (−369, 19) 33589
21550625 5 (−1,−1) (0, 0) (−2, 2) (−3, 1) (−4862, 2168) 34481
22974464 8 (−4,−1) (4, 1) (−2,−1) (2, 1) (−262,−76) 5609
23040000 5 (−4, 0) (2, 0) (6.2) (1, 1) (−9024,−4032) 36864
23040000 8 (−2,−2) (6, 1) (−2, 2) (2, 0) (−450,−150) 5625

23643125 5 (−3,−1) (0, 0) (3, 1) (−3,−1) (−3521,−1565) 37829

(r, s) = (6, 1)

−68856875 5 (−2, 0) (−5,−1) (1, 1) (3, 1) (771, 455) −110171

−73061875 5 (−4, 0) (−3,−1) (5, 1) (1, 1) (1747, 839) −116899
−74671875 5 (−3,−1) (−1, 1) (−2, 2) (−3, 1) (−5085, 2295) −119475
−74906875 5 (−1,−1) (−2, 2) (−2, 0) (1,−1) (379,−353) −119851
−84356875 5 (0, 0) (−3,−1) (1,−1) (−1, 1) (−961, 541) −134971

−86606875 5 (−1,−1) (−1,−1) (1, 1) (−4, 2) (−21469, 9607) −138571

The number fields of degree 8, of signature (2, 3) (resp. (4, 2), (6, 1)) and of
discriminant |dK | smaller than 6688609 (resp. 24363884, 92810082) containing a
quadratic subfield found in this way are listed in Table 2.

Conclusion

Theorem 2. There exist up to isomorphism exactly 18 (resp. 21, 6) non-primitive
number fields of degree 8 and of signature (2, 3) (resp. (4, 2), (6.1)) and of discrimi-
nant smaller than 6688609 (resp. 24363884, 92810082) in absolute value. Except for
the fields given in Proposition 1, all the other fields in the tables are characterized
by their discriminant.

Computation of Galois groups. To compute the Galois group of each polyno-
mial represented in Table 3, we have used the method proposed in [1]. Through this
method we can obtain the Galois group as a strong generating set, whose elements
are permutations on all roots of the given polynomial. The notation for the group
names is similar to that of Butler and McKay [3]. Groups preceded by “+” are
groups of even permutations.
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Table 3

(r, s) = (2, 3)

−4286875 = −54 193 −475 x8 − 3x7 + 4x6 − 3x5 + 3x4 − 6x3 + 6x2 − 4x + 1 49 T6

−4461875 = −54 112 59 −275 x8 − x7 − 2x6 + 2x4 + 2x3 − x2 − x− 1 1 T30 ∗
−4616192 = −212 72 23 −448 x8 − 2x7 − x6 + 4x5 − 2x4 − 2x3 + 2x2 − 1 1 T35
−4711123 = −43.3312 −331 x8 − x7 − x5 + 2x3 + x− 1 1 T23 ∗
−4725251 = −59.2832 −283 x8 − 4x6 − 2x5 + 7x4 + 5x3 − 3x2 − 4x− 1 1 T23

−4960000 = −28 54 31 −400 x8 − 4x7 + 7x6 − 10x5 + 8x4 − 4x3 + 2x− 1 1 T35

−5149367 = −47.3312 −331 x8 + 3x7 + 6x6 + 9x5 + 9x4 + 9x3 + 6x2 + 3x + 1 1 T23
−5365963 = −67.2832 −283 x8 + 3x7 + x6 − x5 + 4x4 + 4x3 + x2 + x− 1 1 T23 ∗
−5365963 = −67.2832 −283 x8 − 4x7 + 8x6 − 13x5 + 15x4 − 13x3 + 8x2 − 4x + 1 1 T23 ∗
−5369375 = −54 112 71 −275 x8 + 2x7 − 2x6 − 4x5 + 3x4 + 2x3 − 3x2 + x + 1 1 T30 ∗
−5756875 = −54 61.151 5 x8 − x7 − 2x6 + 3x5 − 3x3 + 2x2 − 1 1 T47 ∗
−5781875 = −54 11.292 725 x8 − x7 + x6 − 2x5 + x4 − 2x3 + x2 − x + 1 1 T35

−5856875 = −54 9371 5 x8 − x7 − 4x6 + 3x5 + 6x4 − 2x3 − 4x2 − x + 1 1 T47

−6022411 = −19.5632 −563 x8 − x7 − 5x6 + 3x5 + 9x4 − x3 − 4x2 − 2x− 1 121 T23
−6464099 = −59.3312 −331 x8 − x7 − 2x6 + 4x5 − 2x4 + 3x3 − 3x2 − 1 1 T23

−6647387 = −83.2832 −283 x8 − 4x7 + 5x6 − 4x5 + 4x4 − x3 − x2 − 1 1 T23

−6647387 = −83.2832 −283 x8 − 2x6 + x5 + 5x4 − 7x3 + 3x2 + x− 1 1 T23

−6668032 = −28 7.612 −976 x8 − 3x6 + 2x4 + 2x3 − 2x− 1 1 T23

(r, s) = (4, 2)

15243125 = 54 293 725 x8 + x7 − 3x6 − 3x5 + 3x4 + 6x3 − 2x2 − 3x + 1 7 T17

15297613 = 37.6432 −643 x8 − 2x7 + x4 + 5x3 − x2 − 4x− 1 1 T23 ∗
16324589 = 149.3312 −331 x8 − 2x7 − 3x6 + 5x5 + 5x4 − 6x3 − x2 + 3x− 1 1 T23
16643125 = 54 26629 5 x8 − x7 − 2x6 + 2x5 − x3 + x + 1 1 T47

17238125 = 54 27581 5 x8 − x7 − 3x6 + 2x5 + 2x4 + 2x3 − 3x− 1 1 T47

17318125 = 54 112 229 −275 x8 − x7 − 3x6 + 5x5 + 3x4 − 11x3 + 8x− 1 23 T35

18340381 = 229.2832 −283 x8 − 4x6 + x5 + 5x4 − x3 − 4x2 + 1 1 T23
18660737 = 233.2832 −283 x8 − 3x6 − 4x5 + 5x4 + 4x3 − 3x2 + 1 16 T23

19268125 = 54 30829 5 x8 − 4x7 + 3x6 + 3x5 − 4x3 − x + 1 1 T47

19360000 = 28 54 112 4400 x8 − 3x6 + 3x4 − 3x2 + 1 1 +T18
20262517 = 11.23.2832 −283 x8 − 4x7 + 5x6 − 4x5 + 5x4 + x3 − 7x2 + x + 1 9 T23

20268125 = 54 32429 5 x8 − 2x7 − 5x6 + 7x5 + 2x4 − 7x3 + 2x2 + 2x− 1 1 T47

20493125 = 54 32789 5 x8 − x7 + 3x5 − 3x4 + 2x2 − 2x− 1 1 T47

20502784 = 28 2832 −283 x8 − x6 + 4x4 − 4x2 + 1 1 +T39
20993125 = 54 33589 5 x8 − 3x6 + x5 + 2x4 − 4x3 + 3x− 1 1 T47

21543941 = 269.2832 −283 x8 + x7 − 6x6 − 5x5 + 10x4 + 10x3 − 4x2 − 5x− 1 1 T23

21550625 = 54 292 41 725 x8 − x7 − x6 − 2x5 + 3x4 + 4x3 − 4x2 − 2x + 1 1 T35

22974464 = 212 71.79 8 x8 − 4x7 + 6x6 − 6x5 + 4x4 − x2 + 2x− 1 1 T47
23040000 = 212 54 32 1600 x8 − 2x7 − x6 + 4x5 + 5x4 − 8x3 − 5x2 + 6x− 1 89 +T11

23643125 = 54 11.19.181 5 x8 − 3x7 + x6 + 3x5 − 5x4 + 2x3 + x2 − 2x + 1 1 T47

24212981 = 13.17.3312 −331 x8 − x7 + 2x6 + x5 − 7x4 + 5x3 + 3x2 − 4x + 1 1 T23

(r, s) = (6, 1)

−68856875 = 54 292 131 725 x8 − 2x7 − 4x6 + 6x5 + 7x4 − 3x3 − 6x2 − x + 1 1 T35

−73061875 = 54 292 139 725 x8 + 4x7 + x6 − 11x5 − 8x4 + 7x3 + 6x2 − 1 1 T35

−74671875 = 34 56 59 1125 x8 − x7 − 6x6 + 3x5 + 9x4 − 4x3 − 4x2 + 2x + 1 1 T27
−74906875 = 54 119851 5 x8 − x7 − 3x6 + 4x5 − 2x4 − x3 + 5x2 − x− 1 1 T47

−84356875 = 54 71.1901 5 x8 − 3x6 + x5 − 4x3 + 3x2 + 2x− 1 1 T47

−86606875 = 54 138571 5 x8 − x7 − 3x6 + 2x5 − x4 + 6x3 + 3x2 − 7x− 1 1 T47

We finally notice that the norm of the relative index is equal to 1 for all the
fields given in Tables 1 and 2. The final results are given in Table 3, where we find
(from left to right): the field discriminant and its decomposition; the discriminant
of the fixed subfield; the polynomial defining the extension K/Q, corresponding to
the relative polynomial given in the previous tables; its index; and the Galois group
of the Galois closure of the extension K/Q.

An asterisk (∗) denotes the Euclidean fields discovered by A. Leutbecher [11].
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9. H. J. Godwin, On quartic fields of signature one with small discriminant, Quart. J. Math.

Oxford Ser. (2) 8 (1957), 214–222. MR 20:3844
10. H. J. Godwin, Real quartic fields with small discriminant, J. London Math. Soc. 31 (1956),

478–485. MR 18:565b

11. A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier, Grenoble
35, 2 (1985), 83–106. MR 86j:11107
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