Improved error bounds

for scattered data interpolation

by radial basis functions

Author:
R. Schaback

Journal:
Math. Comp. **68** (1999), 201-216

MSC (1991):
Primary 41A15, 41A25, 41A30, 41A63, 65D10

DOI:
https://doi.org/10.1090/S0025-5718-99-01009-1

MathSciNet review:
1604379

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If additional smoothness requirements and boundary conditions are met, the well-known approximation orders of scattered data interpolants by radial functions can roughly be doubled.

**1.**Ahlberg, J.H., Nilson, E.N. and Walsh, J.L.*The theory of splines and their applications*, Mathematics in Science and Engineering (38), Academic Press, 1967. MR**39:684****2.**Iske, A.*Characterization of function spaces associated with conditionally positive definite functions*, Mathematical Methods for Curves and Surfaces, (M. Daehlen, T. Lyche and L.L. Schumaker, eds.), Vanderbilt University Press, Nashville, TN, pp. 265-270, 1995. MR**96f:65003****3.**Iske, A.*Reconstruction of functions from generalized Hermite-Birhoff data*, Approximation Theory VIII, (C.K. Chui and L.L. Schumaker, eds.), World Scientific, Singapore, pp. 257-264, 1995. CMP**98:01****4.**Madych, W.R. and Nelson, S.A.*Error bounds for multiquadric interpolation*, Approximation Theory VI (C.K. Chui and L.L. Schumaker and J.D. Ward, eds.), Academic Press, Boston, pp. 413-416, 1989. MR**91j:41002****5.**Madych, W.R. and Nelson, S.A.*Multivariate interpolation and conditionally positive definite functions*. II, Math. Comp. 54 (1990), pp. 211-230. MR**90e:91007****6.**Madych, W.R. and Nelson, S.A.*Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation*, Journal of Approximation Theory 70 (1992), pp. 94-114. MR**93f:41009****7.**Schaback, R.*Error estimates and condition numbers for radial basis function interpolation*, Advances in Computational Mathematics 3 (1995), pp. 251-264. MR**96a:41004****8.**Schaback, R. and Wu, Z.*Operators on radial functions*, J. of Comp. and Appl. Math. 73 (1996), pp. 257-270. MR**97g:42002****9.**Schumaker, L.L.*Spline Functions: Basic Theory*, Wiley-Interscience, 1981. MR**82j:41001****10.**Wu, Z. and Schaback, R.,*Local error estimates for radial basis function interpolation of scattered data*, IMA Journal of Numerical Analysis 13 (1993), pp. 13-27. MR**93m:65012**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
41A15,
41A25,
41A30,
41A63,
65D10

Retrieve articles in all journals with MSC (1991): 41A15, 41A25, 41A30, 41A63, 65D10

Additional Information

**R. Schaback**

Affiliation:
Institut für Numerische und Angewandte Mathematik, Georg-August-Universität, Lotzestrasse 16-18, 37083, Göttingen, Germany

DOI:
https://doi.org/10.1090/S0025-5718-99-01009-1

Received by editor(s):
May 10, 1996

Received by editor(s) in revised form:
May 21, 1997

Article copyright:
© Copyright 1999
American Mathematical Society