Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Non-reflecting boundary conditions
for waveguides


Authors: A. Bendali and Ph. Guillaume
Journal: Math. Comp. 68 (1999), 123-144
MSC (1991): Primary 35Q60, 35J05, 65N12, 65N15, 65N30, 78A50
DOI: https://doi.org/10.1090/S0025-5718-99-01016-9
MathSciNet review: 1609674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New non-reflecting boundary conditions are introduced for the solution of the Helmholtz equation in a waveguide. These boundary conditions are perfectly transparent for all propagating modes. They do not require the determination of these propagating modes but only their propagation constants. A quasi-local form of these boundary conditions is well suited as terminating boundary condition beyond finite element meshes. Related convergence properties to the exact solution and optimal error estimates are established.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Part II, Comm. Pure Appl. Math. 27 (1964), 35-92. MR 28:5252
  • 2. A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725. MR 82b:65091
  • 3. A. Bendali, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2: the discrete problem, Math. of Comp., 43 167 (1984), 47-68. MR 86i:65071b
  • 4. A. Bendali and M. Souilah, Consistency estimates for a double-layer potential and application to the numerical analysis of the boundary-element approximation of acoustic scattering by a penetrable object, Math. of Comp. 62 (1994), 65-91. MR 94c:65146
  • 5. J.-P. Berenger, A Perfectly Matched Layer for the Absorbtion of Electromagnetic Waves, Journal of Computational Physics, 114 (1994), 185-200. MR 94c:78002
  • 6. C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. of Num. Anal., 26 (1989), 1212-1240. MR 91a:65228
  • 7. J. H. Bramble and V. Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl., 101 (1974), 115-152. MR 52:9639
  • 8. Z. Bi, K. Wu, C. Wu and J. Litva, A Dispersive Boundary Condition for Microstrip Component Analysis Using The FD-TD Method, IEEE Transactions on Microwave Theory and Techniques, 40 (1992), 774-777.
  • 9. J. Chazarain and A. Piriou, Introduction to the theory of linear partial differential equations, North-Holland, Amsterdam and New-York, 1982. MR 83j:35001
  • 10. P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam and New-York, 1978. MR 58:25001
  • 11. P. G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 1991, 17-351. MR 92f:65001
  • 12. B. Engquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. of Comp. 31 139 (1977), 629-651. MR 55:9555
  • 13. B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math. 32 (1979), 313-357. MR 80e:76041
  • 14. Ch. I. Goldstein, A Finite Element Method for Solving Helmholtz Type Equations in Waveguides and Other Unbounded Domains, Math. of Comp. 39 160 (1982), 309-324. MR 84e:65112
  • 15. P. Grisvard, Elliptic Problems in Non-Smooth Domains, Pitman, Boston, London and Melbourne, 1985. MR 86m:35044
  • 16. P. Grisvard, Caractérisation de quelques espaces d'interpolation, Arch. Rational Mech. Anal., 25 (1967), 40-63. MR 35:4718
  • 17. J.-C. Guillot and C. H. Wilcox, Steady-State Wave Propagation in Simple and Compound Acoustic Waveguides, Math. Z. 160 (1978), 89-102. MR 80c:35023
  • 18. Ph. Guillaume and M. Masmoudi, Solution to the time-harmonic Maxwell's equations in a waveguide, use of higher order derivatives for solving the discrete problem, SIAM J. Numer. Anal., 34 (1997), 1306-1330. CMP 97:16
  • 19. L. Halpern and L. N. Trefethen, Well-posedness of one-way wave equations and absorbing boundary conditions, Math. of Comp. 47 (1986), 421-435. MR 88b:65148
  • 20. R. L. Higdon, Numerical Absorbing Boundary Conditions for the Wave Equation, Math. of Comp., 49 179 (1987), 65-90. MR 88f:65168.
  • 21. J. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, New-York, 1993.
  • 22. D. S. Jones, The eigenvalues of $\Delta u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains, Poc. Cambridge Philos. Soc., 49 (1953), 668-684. MR 15:319c
  • 23. M. Lenoir and A. Tounsi, The localized finite element method and its application to the two-dimensional sea-keeping problem, SIAM J. Numer. Anal. 25 (1988), 729-752. MR 89k:65138
  • 24. E. L. Lindman, ``Free-space'' boundary conditions for the time-dependent wave equation, J. Comp. Phys. 18 (1975), 66-78.
  • 25. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin, Heidelberg and New-York, 1972. MR 50:2670
  • 26. W. Pascher and R. Pregla, Analysis of rectangular waveguide junctions by the method of lines, IEEE Trans. on Microwaves Theory and Techniques 43 (1995), 2649-2653.
  • 27. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz and A. Taflove, Ultrawideband Absorbing Boundary Condition for Termination of Waveguiding Structures in FD-TD Simulations, IEEE Microwave and guided wave letters 4 (1994), 344-346.
  • 28. G. Strang and G. J. Fix, An analysis of the finite-element method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973. MR 56:1747
  • 29. A. Taflove, Computational Electrodynamics, The Finite-Difference Time-Domain Method, Artech House, Boston and London, 1995. MR 96f:78001
  • 30. M. Taylor, Pseudodifferential operators, Princeton University Press, Princeton, 1981. MR 82i:35172
  • 31. C. P. Wu, Variational and Iterative Methods for Waveguides and Arrays, in ``Computer Techniques for Electromagnetics'', (R. Mittra Ed.), Pergamon, New-York, 1973, 265-304. MR 57:2211
  • 32. Z. Wu and J. Fang, Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structure, IEEE Trans. on Microwaves Theory and Techniques, 43 (1995), 2676-2683.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 35Q60, 35J05, 65N12, 65N15, 65N30, 78A50

Retrieve articles in all journals with MSC (1991): 35Q60, 35J05, 65N12, 65N15, 65N30, 78A50


Additional Information

A. Bendali
Affiliation: Département de Génie Mathématique, INSA Toulouse & CNRS-UMR 5640 MIP, Avenue de Rangueil, 31077 Toulouse Cedex, France
Email: bendali@gmm.insa-tlse.fr

Ph. Guillaume
Affiliation: Département de Génie Mathématique, INSA Toulouse & CNRS-UMR 5640 MIP, Avenue de Rangueil, 31077 Toulouse Cedex, France
Email: guillaum@gmm.insa-tlse.fr

DOI: https://doi.org/10.1090/S0025-5718-99-01016-9
Keywords: Guided propagation, absorbing boundary conditions, waveguides, Helmholtz equation, acoustics, electromagnetics, finite element
Received by editor(s): May 26, 1996
Received by editor(s) in revised form: May 23, 1997
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society