Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



of nonconforming multigrid methods
without full elliptic regularity

Author: Susanne C. Brenner
Journal: Math. Comp. 68 (1999), 25-53
MSC (1991): Primary 65N55, 65N30
MathSciNet review: 1620215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider nonconforming multigrid methods for symmetric positive definite second and fourth order elliptic boundary value problems which do not have full elliptic regularity. We prove that there is a bound ($<1$) for the contraction number of the $W$-cycle algorithm which is independent of mesh level, provided that the number of smoothing steps is sufficiently large. We also show that the symmetric variable $V$-cycle algorithm is an optimal preconditioner.

References [Enhancements On Off] (What's this?)

  • 1. A. Adini and R.W. Clough, Analysis of plate bending by the finite element method, NSF Report G. 7337 (1961).
  • 2. T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second order elliptic problems, Math. Comp. 64 (1995), 943-972.
  • 3. J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method, Aero. J. Roy. Aero. Soc. 72 (1968), 701-709.
  • 4. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, R.A.I.R.O Modél. Math. Anal. Numér. 19 (1985), 7-32. MR 87g:65126
  • 5. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 21 (1990), 281-312. MR 91c:65068
  • 6. R.E. Bank and T.F. Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), 35-51. MR 82b:65113
  • 7. J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin, 1976. MR 58:2349
  • 8. F.K. Bogner, R.L. Fox and L.A. Schmit, The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, Proc. Conf. Matrix Methods in Structural Mechanics (1965).
  • 9. D. Braess and R. Verfürth, Multigrid methods for nonconforming finite element methods, SIAM J. Numer. Anal. 27 (1990), 979-986. MR 95j:65164
  • 10. J.H. Bramble, Multigrid Methods, Longman Scientific & Technical, Essex, 1993. MR 95b:65002
  • 11. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 113-124. MR 41:7819
  • 12. J.H. Bramble and J.E. Pasciak, New estimates for multigrid algorithms including the $V$-cycle, Math. Comp. 60 (1993), 447-471. MR 94a:65064
  • 13. J.H. Bramble, J.E. Pasciak and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), 1-34. MR 91h:65159
  • 14. S.C. Brenner, Multigrid Methods for Nonconforming Finite Elements, Dissertation, The University of Michigan, 1988.
  • 15. -, An optimal-order multigrid method for $P1$ nonconforming finite elements, Math. Comp. 52 (1989), 1-15. MR 89f:65119
  • 16. -, An optimal-order nonconforming multigrid method for the biharmonic equation, SIAM J. Numer. Anal. 26 (1989), 1124-1138. MR 90i:65189
  • 17. -, Multigrid methods for nonconforming finite elements, Copper Mountain Conference on Multigrid methods (J. Mandel, et. al., eds.), SIAM, Philadelphia, 1989, pp. 54-65. MR 91h:65189
  • 18. -, A nonconforming multigrid method for the stationary Stokes equations, Math. Comp. 52 (1990), 411-437. MR 91d:65167
  • 19. -, A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method, SIAM J. Numer. Anal. 29 (1992), 647-678. MR 93j:65175
  • 20. -, A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity, SIAM J. Numer. Anal. 30 (1993), 116-135. MR 93m:65166
  • 21. -, A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity, Math. Comp. 63 (1994), 435-460, S1-S5. MR 95c:73076
  • 22. -, Two-level additive Schwarz preconditioners for nonconforming finite elements, Domain Decomposition Methods in Scientific and Engineering Computing (D. Keyes and J. Xu, eds.), Proceedings of the Seventh International Conference on Domain Decomposition, Contemp. Math. 180, 1994, pp. 9-14. MR 95j:65134
  • 23. -, Multigrid methods for parameter dependent problems, RAIRO Modél. Math. Anal. Numér. 30 (1996), 265-297. MR 97c:73076
  • 24. -, Two-level additive Schwarz preconditioners for nonconforming finite elements, Math. Comp. 65 (1996), 897-921. MR 96j:65117
  • 25. -, A two-level additive Schwarz preconditioner for nonconforming plate elements, Numer. Math. 72 (1996), 419-447. MR 97h:65147
  • 26. -, Preconditioning complicated FEMs by simple FEMs, SIAM J. Sci. Comput. 17 (1996), 1269-1274. MR 97g:65226
  • 27. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, Berlin, 1994. MR 95f:65001
  • 28. S.C. Brenner and L.-Y. Sung, Linear finite element methods for planar linear elasticity, Math. Comp. 59 (1992), 321-338. MR 93a:73078
  • 29. P.G. Ciarlet, Conforming and nonconforming finite element methods for solving the plate problem, Conference on the Numerical Solution of Differential Equations (G.A. Watson, ed.), Lecture Notes in Mathematics, vol. 363, Springer-Verlag, Berlin, 1974, pp. 21-31. MR 54:11806
  • 30. -, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • 31. -, Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle, Math. Comp. 32 (1978), 335-344. MR 80i:65114
  • 32. J.F. Ciavaldini and J.C. Nedelec, Sur l'élément de Fraeijs de Veubeke et Sander, RAIRO R-2 (1974), 29-45. MR 52:2247
  • 33. P. Clément, Approximation by finite element functions using local regularization, R.A.I.R.O. R-2 (1975), 77-84. MR 53:4569
  • 34. R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending, Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.
  • 35. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. R-3 (1973), 33-75. MR 49:8401
  • 36. M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math., vol. 1341, Springer-Verlag, Berlin, 1988. MR 91a:35078
  • 37. R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity, Math. Comp. 57 (1991), 529-550. MR 92a:65290
  • 38. B. Fraeijs de Veubeke, A conforming finite element for plate bending, Int. J. Solids and Structure 4 (1968), 95-108.
  • 39. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985. MR 86m:35044
  • 40. -, Problèmes aux limites dans les polygones, Mode d'emploi, EDF Bull. Direction Études Rech. Sér. C. Math. Inform. 1 (1986), 21-59. MR 87g:35073
  • 41. -, Singularities in Boundary Value Problems, Springer-Verlag, Berlin, 1992. MR 93h:35004
  • 42. W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985. MR 87e:65082
  • 43. M.R. Hanisch, Multigrid preconditioning for the biharmonic Dirichlet problem, SIAM J. Numer. Anal. 30 (1993), 184-214. MR 94e:65131
  • 44. S.G. Kre[??]in, Ju. I. Petunin and E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, 1982.
  • 45. P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem, R.A.I.R.O. R-1 (1975), 9-53. MR 54:11941
  • 46. S. McCormick (ed.), Multigrid Methods, SIAM Frontiers in Applied Mathematics 3, SIAM, Philadelphia, 1987. MR 89m:65004
  • 47. L.S.D. Morley, The triangular equilibrium problem in the solution of plate bending problems, Aero. Quart. 19 (1968), 149-169.
  • 48. J. Ne\v{c}as, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967. MR 37:3168
  • 49. P. Peisker and D. Braess, A conjugate gradient method and a multigrid algorithm for Morley's finite element approximation of the biharmonic equation, Numer. Math. 50 (1987), 567-586. MR 88e:65147
  • 50. P. Peisker, W. Rust and E. Stein, Iterative solution methods for plate bending problems: multigrid and preconditioned cg algorithm, SIAM J. Numer. Anal. 27 (1990), 1450-1465. MR 91h:73055
  • 51. P. Percell, On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal. 13 (1976), 100-103. MR 53:11963
  • 52. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth. PDE 8 (1992), 97-111. MR 92i:65170
  • 53. P.-A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (I.Galligani and E. Magenes, eds.), Lecture Notes in Mathematics, vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. MR 58:3547
  • 54. G. Sander, Bornes supérieures et inférieures dans l'analyse matricielle des plaques en flexion-torsion, Bull. Soc. Roy. Sci. Liège 33 (1964), 456-494. MR 30:764
  • 55. P. Schreiber and S. Turek, Multigrid results for the nonconforming Morley element, preprint (1993).
  • 56. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54 (1990), 483-493. MR 90j:65021
  • 57. R. Seeley, Interpolation in $L^{p}$ with boundary conditions, Studia Math. 44 (1972), 47-60. MR 47:3981
  • 58. Z. Shi, On the convergence of the incomplete biquadratic nonconforming plate element, Math. Numer. Sinica 8 (1986), 53-62 (Chinese). MR 87j:73084
  • 59. -, Error estimates of Morley element, Chinese J. Num. Math. & Appl. 12 (1990), 9-15. MR 91i:65182
  • 60. Z. Shi, X. Yu and Z. Xie, A multigrid method for Bergan's energy-orthogonal plate element, Advances in Numerical Mathematics: Proc. Second Japan-China Sem. (Tokyo, 1994), Lecture Notes Numer. Appl. Anal., vol. 14, Kinokuniya, Tokyo, 1995, pp. 159-169. MR 98g:73041
  • 61. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. MR 80i:46032
  • 62. S. Turek, Ein robustes und effizientes Mehrgitterverfahren zur Lösung der instationären, inkompressiblen 2-D Navier-Stokes-Gleichungen mit diskret divergenzfreien finiten Elementen, Dissertation, Universität Heidelberg, 1991.
  • 63. -, Multigrid techniques for a divergence-free finite element discretization, East-West J. Numer. Math. 2 (1994), 229-255. MR 96c:65195
  • 64. M. Wang, The multigrid method for TRUNC plate element, J. Comput. Math. 11 (1993), 178-187. MR 94m:65192
  • 65. -, The $W$-cycle multigrid method for finite elements with nonnested spaces, Adv. in Math. 23 (1994), 238-250. MR 95e:65118
  • 66. S. Zhang, An optimal order multigrid method for biharmonic, $C^{1}$ finite element equations, Numer. Math. 56 (1989), 613-624. MR 90j:65135
  • 67. Z. Zhang and S. Zhang, Wilson's element for the Reissner-Mindlin plate, Comput. Methods Appl. Mech. Engrg. 113 (1994), 55-65. MR 94k:73078
  • 68. S. Zhou and G. Feng, Multigrid method for the Zienkiewicz element approximation of biharmonic equation, J. Hunan Univ. 20 (1993), 1-6 (Chinese). MR 94c:65155

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N55, 65N30

Retrieve articles in all journals with MSC (1991): 65N55, 65N30

Additional Information

Susanne C. Brenner
Affiliation: Department of Mathematics, University of South Carolina, Columbia, SC 29208

Keywords: Multigrid methods, nonconforming finite elements, macro elements, precondi\-tion\-er, $W$-cycle, variable $V$-cycle
Received by editor(s): April 13, 1995
Additional Notes: This work was supported in part by the National Science Foundation under Grant No. DMS-94-96275.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society