Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The $k^{th}$ prime is greater than
$k(\ln k +\ln\ln k -1)$ for $k\geq 2$


Author: Pierre Dusart
Journal: Math. Comp. 68 (1999), 411-415
MSC (1991): Primary 11N05; Secondary 11A41
DOI: https://doi.org/10.1090/S0025-5718-99-01037-6
MathSciNet review: 1620223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: ROSSER and SCHOENFELD have used the fact that the first 3,500,000 zeros of the RIEMANN zeta function lie on the critical line to give estimates on $\psi(x)$ and $\theta(x)$. With an improvement of the above result by BRENTet al., we are able to improve these estimates and to show that the $k^{th}$ prime is greater than $k(\ln k +\ln\ln k -1)$ for $k\geq 2$. We give further results without proof.


References [Enhancements On Off] (What's this?)

  • 1. R. P. BRENT, J. VAN DE LUNE, H. J. J. TE RIELE & D. T. WINTER, On the Zeros of the Riemann Zeta Function in the Critical Strip. II, Math. Of Computation 39 Number 160 (October 1982), 681-688. MR 83m:10067; MR 87e:11103
  • 2. M. CIPOLLA, La determinazione assintotica dell'$n^{imo}$ numero primo, Matematiche Napoli 3 (1902), 132-166.
  • 3. J. VAN DE LUNE, H. J. J. TE RIELE & D.T. WINTER, On the Zeros of the Riemann Zeta Function in the Critical Strip.IV, Math. Of Computation 46 Number 174 (April 1986), 667-681. MR 87e:11102
  • 4. J.-P. MASSIAS & G. ROBIN, Bornes effectives pour certaines fonctions concernant les nombres premiers, Journal de Théorie des Nombres de Bordeaux 8 (1996), 215-242. MR 97g:11099
  • 5. G. ROBIN, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonctions $\omega(n)$, nombre de diviseurs premiers de $n$, Acta Arithmetica 42 numéro 4 (1983), 367-389. MR 85j:11109
  • 6. J. B. ROSSER, The $n$-th prime is greater than $n\log n$, Proc. London Math. Soc. (2) 45 (1939), 21-44.
  • 7. J. B. ROSSER, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232. MR 2:150e
  • 8. J. B. ROSSER & L. SCHOENFELD, Approximate Formulas for Some Functions of Prime Numbers, Illinois Journal Math. 6 (1962), 64-94. MR 25:1139
  • 9. J. B. ROSSER & L. SCHOENFELD, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$, Math. Of Computation 29 Number 129 (January 1975), 243-269. MR 56:11581a
  • 10. L. SCHOENFELD, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$.II, Math. Of Computation 30 Number 134 (April 1976), 337-360. MR 56:11581b,c

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11N05, 11A41

Retrieve articles in all journals with MSC (1991): 11N05, 11A41


Additional Information

Pierre Dusart
Affiliation: LACO, ESA 6090, Faculté des Sciences, 123 avenue Albert Thomas, 87060 Limoges Cedex, FRANCE
Email: dusart@unilim.fr

DOI: https://doi.org/10.1090/S0025-5718-99-01037-6
Keywords: Distribution of primes, arithmetic functions
Received by editor(s): June 17, 1996
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society