Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On best possible order of convergence estimates
in the collocation method and Galerkin's method
for singularly perturbed boundary value
problems for systems of first-order
ordinary differential equations


Authors: I. A. Blatov and V. V. Strygin
Journal: Math. Comp. 68 (1999), 683-715
MSC (1991): Primary 65-02, 65L99; Secondary 65G99, 45A10
DOI: https://doi.org/10.1090/S0025-5718-99-01034-0
MathSciNet review: 1620211
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The collocation method and Galerkin method using parabolic splines are considered. Special adaptive meshes whose number of knots is independent of the small parameter of the problem are used. Unimprovable estimates in the $L_\infty$-norm are obtained. For the Galerkin method these estimates are quasioptimal, while for the collocation method they are suboptimal.


References [Enhancements On Off] (What's this?)

  • 1. C. de Boor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), 582-606. MR 51:9528
  • 2. J. Cerutti, Collocation for systems of ordinary differential equations, Comp. Sci. Tech. Rep. 230. Univ. Wisconsin-Madison, 1974.
  • 3. U. Ascher, J. Christiansen, and R. Russell, A collocation solver for mixed order systems of boundary value problems, Math Comp. 33 (1979), 659-679. MR 80b:65108
  • 4. F. Natterer, Uniform convergence of Galerkin's method for splines on highly nonuniform meshes, Math Comp. 31 (1977), 457-468. MR 55:6870
  • 5. P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • 6. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math., vol. 1054, Springer-Verlag, Berlin, 1984. MR 86k:65006
  • 7. I. A. Blatov and V. V. Strygin, Convergence of the Galerkin method for nonlinear two-point singularly perturbed boundary value problems in the space $C[a,b]$, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), 1001-1008; English transl., USSR Comput. Math. and Math. Phys. 25 (1985), no. 4, 25-30. MR 87b:65102
  • 8. -, Convergence of the spline collocation method on optimal grids for singularly perturbed boundary value problems, Differentsial$'$nye Uravnenia 24 (1988), 1977-1987; English transl., Differential Equations 24 (1988), 1330-1338. MR 90f:65128
  • 9. -, The spline collocation method on adaptive meshes for singularly perturbed boundary value problems, Soviet Math. Dokl. 39, (1989), 136-139. MR 90e:65112
  • 10. I. A. Blatov, The projective method for singularly perturbed boundary value problems, Zh. Vychisl. Mat. i Mat. Fiz. 30 (1990), 1031-1044; English transl. in USSR Comput. Math. and Math. Phys. 30 (1990). MR 91h:65123
  • 11. V. V. Strygin and V. V. Sirunjan, The Galerkin method for singularly perturbed boundary value problem on adaptive meshes, Sibirsk. Mat. Zh. 31 (1990), no. 5, 138-148; English transl., Siberian Math. J. 31 (1990), 817-826. MR 92a:65235
  • 12. U. Ascher and R. Weiss, Collocation for singular perturbation problems. I: First order systems with constant coefficients, SIAM J. Numer. Anal. 20 (1983), 537-557. MR 85a:65113
  • 13. -, Collocation for singular perturbation problems. II: Linear first order systems without turning pints, Math. Comp. 43 (1984), 157-187. MR 86g:65138a
  • 14. C. Ringhofer, On collocation schemes for quasilinear singularly perturbed boundary value problems, SIAM J. Numer. Anal. 21 (1984), 864-882. MR 86j:65096
  • 15. J. A. Nitsche, $L_\infty$-convergence of finite element approximations, Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin, 1977, pp. 261-274. MR 58:8351
  • 16. F. Natterer, Über die punktwiese Konvergenz finiter Elemente, Numer. Math. 25 (1975), 67-77. MR 57:14514
  • 17. R. Scott, Optimal $L^\infty$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), 681-697. MR 55:9560
  • 18. A. H. Schatz and L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), 47-89. MR 84c:65137
  • 19. A. B. Vasil$'$eva, Asymptotic behavior of solutions of certain problems for ordinary nonlinear differential equations with a small parameter multiplying the highest derivatives, Uspekhi Mat. Nauk 18 (1963), no. 3, 15-86; English transl., Russian Math. Surveys 18 (1963), no. 3, 13-84. MR 28:1363.
  • 20. N. S. Bakhvalov, On optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969), 841-859; English transl. in USSR Comput. Math. and Math. Phys. 9 (1969). MR 40:8273
  • 21. C. de Boor, A Practical Guide to Splines, Appl. Math. Sci., vol. 27, Springer-Verlag, Berlin, 1978. MR 80a:65027
  • 22. I. A. Blatov and V. V. Strygin, Order-sharp estimates in the Galerkin finite element method for singularly perturbed boundary value problems, Russian Acad. Sci. Dokl. Math. 47 (1993), 93-96. MR 94g:65088
  • 23. R. Weiss, An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems, Math. Comp. 42 (1984), 41-67. MR 86b:65085

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65-02, 65L99, 65G99, 45A10

Retrieve articles in all journals with MSC (1991): 65-02, 65L99, 65G99, 45A10


Additional Information

I. A. Blatov
Affiliation: Department of Applied Mathematics and Mechanics, Voronezh State University, Universitetskaya pl.1, Voronezh, Russia, 394693
Email: blatov@kvm.vsu.ru

V. V. Strygin
Affiliation: Department of Applied Mathematics and Mechanics, Voronezh State University, Universitetskaya pl.1, Voronezh, Russia, 394693
Email: strygin@kvm.vsu.ru

DOI: https://doi.org/10.1090/S0025-5718-99-01034-0
Keywords: Finite element method for singular perturbation problems, collocation method, Galerkin method
Received by editor(s): May 28, 1994
Received by editor(s) in revised form: February 11, 1995, and May 26, 1996
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society