Computing rational points

on rank 1 elliptic curves

via -series and canonical heights

Author:
Joseph H. Silverman

Journal:
Math. Comp. **68** (1999), 835-858

MSC (1991):
Primary 11G05, 11Y50

DOI:
https://doi.org/10.1090/S0025-5718-99-01068-6

MathSciNet review:
1627825

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an elliptic curve of rank 1. We describe an algorithm which uses the value of and the theory of canonical heghts to efficiently search for points in and . For rank 1 elliptic curves of moderately large conductor (say on the order of to ) and with a generator having moderately large canonical height (say between 13 and 50), our algorithm is the first practical general purpose method for determining if the set contains non-torsion points.

**1.**C. Batut, D. Bernardi, H. Cohen, M. Olivier,*PARI-GP*, a computer system for number theory, Version 1.39.**2.**B.J. Birch, H.P.F. Swinnerton-Dyer,*Elliptic curves and modular functions*, Modular Functions of One Variable IV (B.J. Birch, W. Kuyk, eds.), Lecture Notes in Math. 476, Springer-Verlag, Berlin, 1975. MR**52:5685****3.**A. Bremner,*On the equation*, Number Theory and Applications (R.A. Mollin, ed.), Kluwer Academic Publishers, 1989, pp. 3-22. MR**92h:11047****4.**A. Bremner, J.W.S. Cassels,*On the equation*, Math. Comp.**42**(1984), 257-264. MR**85f:11017****5.**H. Cohen,*A Course in Computational Algebraic Number Theory*, Graduate Texts in Math., vol. 138, Springer Verlag, Berlin, 1993. MR**94i:11105****6.**J. Cremona,*Algorithms for Modular Elliptic Curves*, Cambridge University Press, Cambridge, 1992. MR**93m:11053****7.**-, private communication, November 1995.**8.**F. Diamond,*On deformation rings and Hecke rings*, Annals of Math.**144**(1996), 137-166. MR**97d:11172****9.**N. Elkies,*Heegner point computations*, Algorithmic Number Theory (L.M. Adelman, M.-D. Huang, eds.), ANTS-I, Lecture Notes in Computer Science, vol. 877, 1994, pp. 122-133. MR**96f:11080****10.**B. Gross and D. Zagier,*Heegner points and derivatives of -series*, Invent. Math.**84**(1986), 225-320. MR**87j:11057****11.**V.A. Kolyvagin,*Euler systems*, The Grothendieck Festschrift, Vol. II, Birkhäuser, Boston, 1990, pp. 435-483. MR**92g:11109****12.**D. Rohrlich,*Variation of the root number in families of elliptic curves*, Compositio Math.**87**(1993), 119-151. MR**94d:11045****13.**K. Rubin,*-adic -functions and rational points on elliptic curves with complex multiplication*, Invent. Math.**107**(1992), 323-350. MR**92m:11063****14.**J.H. Silverman,*The Néron-Tate Height on Elliptic Curves*, Ph.D. thesis, Harvard, 1981.**15.**-,*The Arithmetic of Elliptic Curves*, Graduate Texts in Math., vol. 106, Springer-Verlag, Berlin and New York, 1986. MR**87g:11070****16.**-,*Advanced Topics in the Arithmetic of Elliptic Curves*, Graduate Texts in Math., vol. 151, Springer-Verlag, Berlin and New York, 1994. MR**96b:11074****17.**-,*The difference between the Weil height and the canonical height on elliptic curves*, Math. Comp.**55**(1990), 723-743. MR**91d:11063****18.**R. Taylor and A. Wiles,*Ring-theoretic properties of certain Hecke algebras*, Annals of Math.**141**(1995), 553-572. MR**96d:11072****19.**D. Ulmer,*A construction of local points on elliptic curves over modular curves*, International Math. Research Notes**7**(1995), 349-363. MR**97b:11076****20.**A. Wiles,*Modular elliptic curves and Fermat's last theorem*, Annals of Math.**141**(1995), 443-551. MR**96d:11071****21.**D. Zagier, private communication.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
11G05,
11Y50

Retrieve articles in all journals with MSC (1991): 11G05, 11Y50

Additional Information

**Joseph H. Silverman**

Affiliation:
Mathematics Department, Box 1917, Brown University, Providence, RI 02912 USA

Email:
jhs@gauss.math.brown.edu

DOI:
https://doi.org/10.1090/S0025-5718-99-01068-6

Keywords:
Elliptic curve,
canonical height

Received by editor(s):
May 8, 1996

Received by editor(s) in revised form:
March 3, 1997

Additional Notes:
Research partially supported by NSF DMS-9424642.

Article copyright:
© Copyright 1999
American Mathematical Society