Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Elliptic binomial diophantine equations


Authors: Roelof J. Stroeker and Benjamin M. M. de Weger
Journal: Math. Comp. 68 (1999), 1257-1281
MSC (1991): Primary 11D25, 11G05; Secondary 11B65, 14H52
DOI: https://doi.org/10.1090/S0025-5718-99-01047-9
Published electronically: February 23, 1999
MathSciNet review: 1622097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The complete sets of solutions of the equation $ \binom{n}{k} = \binom{m}{\ell} $ are determined for the cases $ (k,\ell) = (2,3) $, $ (2,4) $, $ (2,6) $, $ (2,8) $, $ (3,4) $, $ (3,6) $, $ (4,6) $, $ (4,8) $. In each of these cases the equation is reduced to an elliptic equation, which is solved by using linear forms in elliptic logarithms. In all but one case this is more or less routine, but in the remaining case ($ (k,\ell) = (3,6) $) we had to devise a new variant of the method.


References [Enhancements On Off] (What's this?)

  • [A] È.T. AVANESOV, ``Solution of a problem on figurative numbers'' (Russian), Acta Arithmetica 12 [1966/67], 409-420. MR 35:6619
  • [BC] A. BAKER AND J. COATES, ``Integer points on curves of genus 1'', Proc. Camb. Phil. Soc. 67 [1970], 595-602. MR 41:1638
  • [BH] YU. F. BILU AND G. HANROT, ``Solving superelliptic Diophantine equations by Baker's method'', Compositio Math. 112 (3) [1998], 223-312.
  • [Co] I. CONNELL, The elliptic curve handbook, manuscript, 1997. Available from the ftp site of McGill University in the directory math.mcgill.ca/pub/ECH1. From the same site the Apecs package can be downloaded.
  • [Cr] J.E. CREMONA, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 93m:11053 The programs mrank, mwrank, findinf may be downloaded from John Cremona's ftp site euclid.ex.ac.uk/pub/cremona.
  • [D] S. DAVID, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France, Vol. 62, 1995. MR 98f:11078
  • [F] G. FALTINGS, ``Endlichkeitssätze für abelsche Varietäten über Zahlkörpern'', Invent. Math. 73 [1983], 349-366. MR 85g:11026a
  • [GPZ] J. GEBEL, A. PETH\H{O} AND H.G. ZIMMER, ``Computing integral points on elliptic curves'', Acta Arithmetica 68 [1994], 171-192. MR 95i:11020
  • [L] D.A. LIND, ``The quadratic field $ \mathbb{Q}(\sqrt{5}) $ and a certain diophantine equation'', Fibonacci Quarterly 6 [1968], 86-93. MR 38:112
  • [M1] L.J. MORDELL, ``On the integer solutions of $ y(y+1) = x(x+1)(x+2) $'', Pacific Journal of Mathematics 13 [1963], 1347-1351. MR 27:3590
  • [M2] L.J. MORDELL, Diophantine Equations, Academic Press, London, New York, 1969. MR 40:2600
  • [N] T. NAGELL, ``Sur les propriétés arithmétiques des cubiques planes du premier genre'', Acta Mathematica 52 [1928/9], 93-126.
  • [P] Á. PINTÉR, ``A note on the diophantine equation $ \binom x4= \binom y2$'', Publ. Math. Debrecen 47 [1995], 411-415. MR 96i:11027
  • [Sik] S. SIKSEK, ``Infinite descent on elliptic curves'', Rocky Mountain J. Math. 25 [1995], 1501-1538. MR 97g:11053
  • [Sil1] J.H. SILVERMAN The arithmetic of elliptic curves, Springer Verlag, Berlin etc., 1986. MR 87g:11070
  • [Sil2] J.H. SILVERMAN, ``The difference between the Weil height and the canonical height on elliptic curves'', Math. Comput. 55 [1990], 723-743. MR 91d:11063
  • [Sin] D. SINGMASTER, ``Repeated binomial coefficients and Fibonacci numbers'', Fibonacci Quarterly 13 [1975], 295-298. MR 54:224
  • [Sm] N.P. SMART, ``$ S $-integral points on elliptic curves'', Mathematical Proceedings of the Cambridge Philosophical Society 116 [1994], 391-399. MR 95g:11050
  • [ST1] R.J. STROEKER AND N. TZANAKIS, ``Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms'', Acta Arithmetica 67 [1994], 177-196. MR 95m:11056
  • [ST2] R.J. STROEKER AND N. TZANAKIS, ``On the Elliptic Logarithm Method for Elliptic Diophantine Equations. Reflections and an Improvement'', to appear in Experimental Math.
  • [SW] R.J. STROEKER AND B.M.M. DE WEGER, ``Solving Elliptic Diophantine Equations: The General Cubic Case'', submitted to Acta Arithmetica.
  • [T] N. TZANAKIS, ``Solving elliptic diophantine equations by estimating linear forms in ellitpic logarithms. The case of quartic equations'', Acta Arithmetica 75 [1996], 165-190. MR 96m:11019
  • [TW] N. TZANAKIS AND B.M.M. DE WEGER, ``On the practical solution of the Thue equation'', J. Number Th. 31 [1989], 99-132. MR 90c:11018
  • [dW1] B.M.M. DE WEGER, ``A binomial diophantine equation'', Quarterly Journal of Mathematics 47 [1996], 221-231. MR 97c:11041
  • [dW2] B.M.M. DE WEGER, ``Equal binomial coefficients: some elementary considerations'', Journal of Number Theory 63 [1997], 373-386. MR 98b:11027

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11D25, 11G05, 11B65, 14H52

Retrieve articles in all journals with MSC (1991): 11D25, 11G05, 11B65, 14H52


Additional Information

Roelof J. Stroeker
Affiliation: Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
Email: stroeker@few.eur.nl

Benjamin M. M. de Weger
Affiliation: Sportsingel 30, 2924 XN Krimpen aan den ijssel, The Neterlands
Email: deweger@xs4all.nl

DOI: https://doi.org/10.1090/S0025-5718-99-01047-9
Keywords: Diophantine equation, elliptic curve, binomial coefficient
Received by editor(s): October 16, 1997
Published electronically: February 23, 1999
Additional Notes: The second author’s research was supported by the Netherlands Mathematical Research Foundation SWON with financial aid from the Netherlands Organization for Scientific Research NWO
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society