Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Calculation of values of $L$-functions
associated to elliptic curves


Authors: Shigeki Akiyama and Yoshio Tanigawa
Journal: Math. Comp. 68 (1999), 1201-1231
MSC (1991): Primary 11F11, 11G40, 11M26
DOI: https://doi.org/10.1090/S0025-5718-99-01051-0
Published electronically: February 10, 1999
MathSciNet review: 1627842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculated numerically the values of $L$-functions of four typical elliptic curves in the critical strip in the range $\text{Im}(s)\leq 400$. We found that all the non-trivial zeros in this range lie on the critical line $\text{Re}(s)=1$ and are simple except the one at $s=1$. The method we employed in this paper is the approximate functional equation with incomplete gamma functions in the coefficients. For incomplete gamma functions, we continued them holomorphically to the right half plane $\text{Re}(s)>0$, which enables us to calculate for large $\text{Im}(s)$. Furthermore we remark that a relation exists between Sato-Tate conjecture and the generalized Riemann Hypothesis.


References [Enhancements On Off] (What's this?)

  • 1. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. MR 93m:11053
  • 2. F. Diamond, On deformation rings and Hecke rings, preprint.
  • 3. H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974. MR 57:5922
  • 4. S. Fermigier, Zéros des Fonction $L$ de Courbes Elliptiques, Experimental Math., 1 (1992), no.2, 167-173. MR 94b:11126
  • 5. W.B. Jones and W.J. Thron, Continued fractions, Analytic Theory and Applications, Encyclopedia of Math. and its Appl., 11 Addison-Wesley, 1980. MR 82c:30001
  • 6. W.B. Jones and W.J. Thron, A Posteriori Bounds for the Truncation Error of Continued fractions, SIAM J. Numer. Anal. 8 (1971), 693-705. MR 45:4602
  • 7. S. Hitotumatu, J. Yamauchi and T. Uno,Sûchikeisanhou III (Numerical Computing Methods III), Baihukan, 1971 (Japanese).
  • 8. T. Kano (ed.) Riemann yosou (Riemann Hypothesis), Nihonhyouronsha, 1991 (Japanese).
  • 9. A. A. Karatsuba, Basic Analytic Number Theory, Springer-Verlag, 1991 (English translation). MR 94a:11001
  • 10. A. W. Knapp, Elliptic curves, Princeton University Press, 1992. MR 93j:11032
  • 11. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons,New York, 1974. MR 54:7415
  • 12. A. F. Lavrik, Approximate functional equation for Dirichlet Functions, Izv. Akad. Nauk SSSR 32 (1968), 134-185. MR 36:6361
  • 13. J.van de Lune, H.J.J.te Riele and D.T.Winter, On the zeros of the Riemann zeta function on the critical strip IV, Math. Comp., 46 (1986), 667-681. MR 87e:11102
  • 14. Ju. I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), 7-71. MR 53:5480
  • 15. -, Parabolic points and zeta-functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-66. MR 47:3396
  • 16. A.M. Odlyzko, The $10^{20}$-th Zeros of the Riemann Zeta Function and $70$ Million of its Neighbors, preprint
  • 17. A. P. Ogg, A remark on the Sato-Tate conjecture, Invent. Math. 9 (1970), 198-200. MR 41:3481
  • 18. F. Shahidi, Symmetric power $L$-functions for GL(2), Elliptic Curves and Related Topics, ed. by H. Kisilevsky and R. Murty, CRM Proc. and Lecture Notes vol 4 (1994), 159-182. MR 95c:11066
  • 19. R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 114 (1995), 553-572. MR 96d:11072
  • 20. E.C.Titchmarsh, The Theory of the Riemann Zeta Function (revised by D.R.Heath-Brown) 2nd edition, Oxford University Press, 1986. MR 88c:11049
  • 21. R. T. Turganaliev, An approximate functional equation and moments of the Dirichlet series generated by the Ramanujan function, Izv. Akad. Nauk Repub. Kazakhstan Ser. Fiz.-Mat. (1992), 49-55 (Russian). MR 94m:11061
  • 22. H.S. Wall, Analytic theory of continued fractions, Chelsea Publ., 1948. MR 10:32d
  • 23. A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 114 (1995), 443-551. MR 96d:11071
  • 24. H. Yoshida, On calculations of zeros L-functions related with Ramanujan's discriminant function on the critical line, J. Ramanujan Math. Soc. 3(1) (1988), 87-95. MR 90b:11044
  • 25. -, On calculations of zeros of various L-functions, Symposium on automorphic forms at Kinosaki (1993), 47-72.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11F11, 11G40, 11M26

Retrieve articles in all journals with MSC (1991): 11F11, 11G40, 11M26


Additional Information

Shigeki Akiyama
Affiliation: Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan
Email: akiyama@math.sc.niigata-u.ac.jp

Yoshio Tanigawa
Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Email: tanigawa@math.nagoya-u.ac.jp

DOI: https://doi.org/10.1090/S0025-5718-99-01051-0
Keywords: Elliptic curve, $L$-function, approximate functional equation, Sato-Tate conjecture, Riemann Hypothesis
Received by editor(s): May 22, 1996
Received by editor(s) in revised form: December 11, 1996
Published electronically: February 10, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society