Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On sums of seven cubes

Authors: F. Bertault, O. Ramaré and P. Zimmermann
Journal: Math. Comp. 68 (1999), 1303-1310
MSC (1991): Primary 11P05, 11Y50; Secondary 11B13, 11D25, 11D72
Published electronically: February 11, 1999
MathSciNet review: 1642805
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every integer between 1290741 and $3.375\times 10^{12}$ is a sum of 5 nonnegative cubes, from which we deduce that every integer which is a cubic residue modulo 9 and an invertible cubic residue modulo 37 is a sum of 7 nonnegative cubes.

References [Enhancements On Off] (What's this?)

  • 1. W.S. Baer ``Über die Zerlegung der ganzen Zahlen in sieben Kuben'', Math. Ann. (1913) Vol 74, pp 511-515.
  • 2. J. Bohman and C.E. Fröberg ``Numerical investigations of Waring's problem for cubes'', BIT (1981) Vol 21, pp 118-122. MR 82k:10063
  • 3. J.M. Deshouillers, F. Hennecart and B. Landreau, private communication.
  • 4. L. E. Dickson ``All integers except 23 and 239 are sums of 8 cubes'', Bull. Amer. Math. Soc. (1939) Vol 45, pp 588-591. MR 1:5e
  • 5. L. E. Dickson ``Theory of numbers'', Vol II, Chelsea Publishing Company (1971).
  • 6. G. H. Hardy and J.E. Littlewood ``Some problems of ``Partitio Numerorum'' IV. The singular series in Waring's Problem and the value of the number $G(k)$'', Math. Zeitschrift (1922) Vol 12, pp 161-188.
  • 7. A. J. Kempner ``Über das Waringsche Problem und einige Verallgemeinerungen'' Diss. Göttingen, 1912. Extract in Math. Annalen, (1912), Vol 72, pp 387.
  • 8. B. Landreau ``Modèle probabiliste pour les sommes de $s$ puissances $s$-ièmes'', Compositio Math. (1995) Vol 99, pp 1-31. MR 97a:11163
  • 9. K. S. McCurley ``An effective seven cube theorem'', J. Number Theory (1984) Vol 19, pp 176-183. MR 86c:11078
  • 10. O. Ramaré and R. Rumely ``Primes in arithmetic progressions'', Math. Comp. (1996) Vol 213, pp 397-425. MR 97a:11144
  • 11. F. Romani ``Computations concerning Waring's problem for cubes'', Calcolo (1982) Vol 19, pp 415-431. MR 85g:11088
  • 12. R.C.Vaughan "On Waring's problem for cubes" J. Reine Angew. Math. (1986) Vol 363, pp 122-170. MR 87j:11103
  • 13. R. C. Vaughan "A new iterative method in Waring's problem'', Acta Math. (1989) Vol 162, pp 1-71. MR 90c:11072
  • 14. R. C. Vaughan "On Waring's problem for cubes II" J. London Math. Soc. (1989) Vol 39, pp 205-218. MR 90c:11073
  • 15. G. L. Watson ``A proof of the seven cube theorem'' J. London Mat. Soc. (1951) Vol 26, pp 153-156. MR 13:915a

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11P05, 11Y50, 11B13, 11D25, 11D72

Retrieve articles in all journals with MSC (1991): 11P05, 11Y50, 11B13, 11D25, 11D72

Additional Information

F. Bertault
Affiliation: Département de mathématiques, Université de Lille I, 59 655 Villeneuve d’Ascq, France

O. Ramaré
Affiliation: LORIA, BP 101, 54600 Villers-lès-Nancy Cedex, France

P. Zimmermann

Keywords: Waring's problem for cubes, computational number theory
Received by editor(s): November 4, 1996
Received by editor(s) in revised form: October 28, 1997
Published electronically: February 11, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society