Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Largest known twin primes
and Sophie Germain primes


Authors: Karl-Heinz Indlekofer and Antal Járai
Journal: Math. Comp. 68 (1999), 1317-1324
MSC (1991): Primary 11-04; Secondary :, 11A41
DOI: https://doi.org/10.1090/S0025-5718-99-01079-0
Published electronically: February 16, 1999
MathSciNet review: 1642750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The numbers $242206083\cdot 2^{38880}\pm 1$ are twin primes. The number $p=2375063906985\cdot 2^{19380}-1$ is a Sophie Germain prime, i.e. $p$ and $2p+1$ are both primes. For $p=4610194180515\cdot 2^{5056}-1$, the numbers $p$, $p+2$ and $2p+1$ are all primes.


References [Enhancements On Off] (What's this?)

  • 1. P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers., Math. Comp. 16 (1962), 363-367. MR 26:6139
  • 2. P. T. Bateman and R. A. Horn, Primes represented by irreducible polynomials in one variable., Theory of Numbers, Proc. Symp. Pure Math. Vol. VIII, Amer. Math. Soc., Providence, R. I., 1965, pp. 119-132. MR 31:1234
  • 3. C. Caldwell, The largest known primes. A regularly updated list available on request, e-mail:caldwell@UTmartn.bitnet (1995).
  • 4. H. Dubner, Large Sophie Germain Primes, Math. Comp. 65 (1996), 393-396. MR 96d:11008
  • 5. K.-H. Indlekofer, A. Járai, Largest known twin primes, Math. Comp. 65 (1996), 427-428. MR 96d:11009
  • 6. D. E. Knuth, The Art of Computer Programming, Vol. 1-3. Second Edition, Addison-Wesley, 1981. MR 83i:68003
  • 7. P. Ribenboim, The Book of Prime Number Records, Springer-Verlag, 1989. MR 90g:11127
  • 8. P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996. MR 96k:11112
  • 9. H. Riesel, Lucasian criteria for the primality of $N=h\cdot 2^{n}-1$, Math. Comp. 23 (1969), 869-875. MR 41:6773
  • 10. B. K. Parady, J. F. Smith, S. E. Zarantonello, Largest known twin primes, Math. Comp. 55 (1990), 381-382. MR 90j:11013

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11-04, :, 11A41

Retrieve articles in all journals with MSC (1991): 11-04, :, 11A41


Additional Information

Karl-Heinz Indlekofer
Affiliation: Universität GH Paderborn, FB 17, D-33095 Paderborn, Germany
Email: k-heinz@uni-paderborn.de

Antal Járai
Affiliation: Universität GH Paderborn, FB 17, D-33095 Paderborn, Germany
Email: jarai@uni-paderborn.de

DOI: https://doi.org/10.1090/S0025-5718-99-01079-0
Received by editor(s): April 7, 1997
Received by editor(s) in revised form: February 5, 1998
Published electronically: February 16, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society