Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of relaxation schemes
for hyperbolic conservation laws
with stiff source terms


Author: A. Chalabi
Journal: Math. Comp. 68 (1999), 955-970
MSC (1991): Primary 35L65, 65M05, 65M10
DOI: https://doi.org/10.1090/S0025-5718-99-01089-3
Published electronically: February 10, 1999
MathSciNet review: 1648367
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.


References [Enhancements On Off] (What's this?)

  • 1. D. Aregba-Driollet and R. Natalini, Convergence of relaxation schemes for conservation laws, Appl. Anal. 61 (1996), 163-193. CMP 98:13
  • 2. A. C. Berkenbosch, E. F. Kaasschieter, and J. H. M. Ten Thije Boonkkamp, The numerical wave speed for one-dimensional scalar conservation laws with source terms. Preprint, Eindhoven University of Technology, (1994).
  • 3. A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, 23 (1994), pp. 955-970. MR 95i:76065
  • 4. A. Chalabi, Stable upwind schemes for hyperbolic conservation laws with source terms, IMA J. Numer. Anal., 12 (1992), pp. 955-970. MR 93c:65108
  • 5. A. Chalabi, An error bound for the polygonal approximation of conservation laws with source terms, Comput. & Math. Appl., 32 (1996), pp. 955-970. MR 97i:65143
  • 6. A. Chalabi, On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms, Math. Comp., 66 (1997), pp. 527-545. MR 97g:65178
  • 7. G. Q. Chen, C. D. Levermore and T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), pp. 787-830. MR 95h:35133
  • 8. P. Colella, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 955-970. MR 87i:76037
  • 9. J. F. Collet and M. Rascle, Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography, Z. Angew. Math. Phys. 47 (1996), 400-409. MR 97d:35132
  • 10. M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation conservation laws, Math. Comp., 34 (1980), pp. 955-970. MR 81b:65079
  • 11. B. Engquist and B. Sjogreen, Robust difference approximations of stiff inviscid detonation waves, CAM report 91-03, UCLA, Los Angeles, CA, 1991.
  • 12. J. B. Goodman and R. Leveque, On the accuracy of stable schemes for 2D scalar conservation laws, Math. Comp., 45 (1985), pp. 955-970. MR 86f:65149
  • 13. S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 122 (1995), pp. 51-67. MR 96g:65084
  • 14. S. Jin, A convex entropy for a hyperbolic system with relaxation, J. Diff. Equations, 127 (1996), pp. 955-970. MR 97c:35130
  • 15. S. Jin and C. D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 126 (1996), pp. 955-970. MR 97g:65173
  • 16. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48 (1995), pp. 955-970. MR 96c:65134
  • 17. P. Klingenstein, Hyperbolic conservation laws with source terms: Errors of the shock location, PhD thesis, Suiss Federal Institute of Tecnology, Zürich (1997).
  • 18. S. N. Kruzkov, First order quasi-linear equations in several independent variables, Math. USSR-Sb., 81 (1970), pp. 955-970. MR 42:2159
  • 19. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 86 (1990), pp. 187-210. MR 90k:76009
  • 20. T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987), pp. 955-970. MR 88f:35092
  • 21. A. Majda, A qualitative model for dynamic combustion, SIAM J. Appl. Math., 40 (1981), pp. 955-970. MR 82j:35096
  • 22. R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996), pp. 955-970. MR 97c:35131
  • 23. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21 (1984), pp. 955-970. MR 86d:65119
  • 24. R. B. Pember, Numerical methods for hyperbolic conservation laws with stiff relaxation II. Higher-order Godunov methods, SIAM J. Sci. Comput., 14 (1993), pp. 955-970. MR 95f:65190
  • 25. H. J. Schroll, A. Tveito and R. Winther, An $L_1$ error bound for semi-implicit difference scheme applied to a stiff system of conservation laws, SIAM J. Numer. Anal. 34 (1997), 1152-1166. MR 98g:65078
  • 26. H. J. Schroll and R. Winther, Finite difference schemes for conservation laws with source terms, IMA J. Numer. Anal., 16 (1996), pp. 955-970. MR 97g:65177
  • 27. P. R. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984), pp. 995-1011. MR 85m:65085
  • 28. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp. 43 (1984), pp. 369-381. MR 86g:65163
  • 29. T. Tang and Z. H. Teng, Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal., 32 (1995), pp. 955-970. MR 95m:65155
  • 30. B. Van Leer, Towards the ultimate conservative difference schemes V. A second order sequel to Godunov's method, J. Comput. Phys., 32 (1979), pp. 955-970. CMP 98:05
  • 31. J. P. Vila, Convergence and error estimates in finite volume schemes for multidimensional scalar conservation laws, Preprint, Nice University (1995).
  • 32. G. B. Whitham, Linear and nonlinear waves, J. Wiley (1974). MR 58:3905

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 35L65, 65M05, 65M10

Retrieve articles in all journals with MSC (1991): 35L65, 65M05, 65M10


Additional Information

A. Chalabi
Affiliation: CNRS, Umr Mip 5640 - UFR Mig Universite P. Sabatier, Route de Narbonne 31062 Toulouse cedex France
Email: chalabi@mip.ups-tlse.fr

DOI: https://doi.org/10.1090/S0025-5718-99-01089-3
Keywords: Conservation laws, stiff source term, relaxation scheme, fully implicit scheme, semi-implicit scheme, TVD scheme, MUSCL method, entropy solution
Received by editor(s): April 29, 1997
Received by editor(s) in revised form: October 14, 1997
Published electronically: February 10, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society