Almost optimal convergence of the point vortex method for vortex sheets using numerical filtering
Authors:
Russel E. Caflisch, Thomas Y. Hou and John Lowengrub
Journal:
Math. Comp. 68 (1999), 14651496
MSC (1991):
Primary 65M25; Secondary 76C05
Published electronically:
May 21, 1999
MathSciNet review:
1651744
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Standard numerical methods for the BirkhoffRott equation for a vortex sheet are unstable due to the amplification of roundoff error by the KelvinHelmholtz instability. A nonlinear filtering method was used by Krasny to eliminate this spurious growth of roundoff error and accurately compute the BirkhoffRott solution essentially up to the time it becomes singular. In this paper convergence is proved for the discretized BirkhoffRott equation with Krasny filtering and simulated roundoff error. The convergence is proved for a time almost up to the singularity time of the continuous solution. The proof is in an analytic function class and uses a discrete form of the abstract CauchyKowalewski theorem. In order for the proof to work almost up to the singularity time, the linear and nonlinear parts of the equation, as well as the effects of Krasny filtering, are precisely estimated. The technique of proof applies directly to other illposed problems such as RayleighTaylor unstable interfaces in incompressible, inviscid, and irrotational fluids, as well as to SaffmanTaylor unstable interfaces in HeleShaw cells.
 1.
Gregory
Baker, Russel
E. Caflisch, and Michael
Siegel, Singularity formation during RayleighTaylor
instability, J. Fluid Mech. 252 (1993), 51–78.
MR
1230990 (94e:76034), http://dx.doi.org/10.1017/S0022112093003660
 2.
J.
Thomas Beale, Thomas
Y. Hou, and John
S. Lowengrub, Growth rates for the linearized motion of fluid
interfaces away from equilibrium, Comm. Pure Appl. Math.
46 (1993), no. 9, 1269–1301. MR 1231428
(95c:76016), http://dx.doi.org/10.1002/cpa.3160460903
 3.
, On the wellposedness of two fluid interfacial flows with surface tension, in Singularities in Fluids, Plasmas and Optics (R. C. Caflisch and G. Papanicolau, editors), NATO ASI Series, Kluwer, 1993, pp. 1138.
 4.
G.
S. Sigovtsev, Existence theorems for a problem of the nonisothermal
flow of a fluid, Problems in functional analysis (Russian),
Petrozavodsk. Gos. Univ., Petrozavodsk, 1985, pp. 76–84,
118–119 (Russian). MR 945416
(89b:76009)
 5.
Russel
E. Caflisch and Oscar
F. Orellana, Long time existence for a slightly perturbed vortex
sheet, Comm. Pure Appl. Math. 39 (1986), no. 6,
807–838. MR
859274 (87m:76018), http://dx.doi.org/10.1002/cpa.3160390605
 6.
Russel
E. Caflisch and Oscar
F. Orellana, Singular solutions and illposedness for the evolution
of vortex sheets, SIAM J. Math. Anal. 20 (1989),
no. 2, 293–307. MR 982661
(90d:76020), http://dx.doi.org/10.1137/0520020
 7.
Russel
E. Caflisch, A simplified version of the abstract
CauchyKowalewski theorem with weak singularities, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 495–500. MR 1027897
(91f:35008), http://dx.doi.org/10.1090/S027309791990159622
 8.
Russel
E. Caflisch and John
S. Lowengrub, Convergence of the vortex method for vortex
sheets, SIAM J. Numer. Anal. 26 (1989), no. 5,
1060–1080. MR 1014874
(91g:76073), http://dx.doi.org/10.1137/0726059
 9.
S. J. Cowley, G. R. Baker, and S. Tanveer, On the formation of Moore curvature singularities in vortex sheets, J. Fluid Mech., submitted.
 10.
W. S. Dai and M. J. Shelley, A numerical study of the effect of surface tension and noise on an expanding HeleShaw bubble, Phys. Fluids A 5 (1993), pp. 14651496.
 11.
A.
J. DeGregoria and L.
W. Schwartz, A boundaryintegral method for twophase displacement
in HeleShaw cells, J. Fluid Mech. 164 (1986),
383–400. MR
844678 (87h:76073), http://dx.doi.org/10.1017/S0022112086002604
 12.
Jean
Duchon and Raoul
Robert, Global vortex sheet solutions of Euler equations in the
plane, J. Differential Equations 73 (1988),
no. 2, 215–224. MR 943940
(89h:35262), http://dx.doi.org/10.1016/00220396(88)901052
 13.
H.
Dym and H.
P. McKean, Fourier series and integrals, Academic Press, New
York, 1972. Probability and Mathematical Statistics, No. 14. MR 0442564
(56 #945)
 14.
Thomas
Y. Hou, John
Lowengrub, and Robert
Krasny, Convergence of a point vortex method for vortex
sheets, SIAM J. Numer. Anal. 28 (1991), no. 2,
308–320. MR 1087506
(92d:65153), http://dx.doi.org/10.1137/0728017
 15.
Robert
Krasny, A study of singularity formation in a vortex sheet by the
pointvortex approximation, J. Fluid Mech. 167
(1986), 65–93. MR 851670
(87g:76028), http://dx.doi.org/10.1017/S0022112086002732
 16.
Daniel
I. Meiron, Gregory
R. Baker, and Steven
A. Orszag, Analytic structure of vortex sheet dynamics. I.
KelvinHelmholtz instability, J. Fluid Mech. 114
(1982), 283–298. MR 647268
(83c:76017), http://dx.doi.org/10.1017/S0022112082000159
 17.
D.
W. Moore, The spontaneous appearance of a singularity in the shape
of an evolving vortex sheet, Proc. Roy. Soc. London Ser. A
365 (1979), no. 1720, 105–119. MR 527594
(80b:76006), http://dx.doi.org/10.1098/rspa.1979.0009
 18.
L.
Nirenberg, An abstract form of the nonlinear CauchyKowalewski
theorem, J. Differential Geometry 6 (1972),
561–576. Collection of articles dedicated to S. S. Chern and D. C.
Spencer on their sixtieth birthdays. MR 0322321
(48 #683)
 19.
Takaaki
Nishida, A note on a theorem of Nirenberg, J. Differential
Geom. 12 (1977), no. 4, 629–633 (1978). MR 512931
(80a:58013)
 20.
P.
G. Saffman and Geoffrey
Taylor, The penetration of a fluid into a porous medium or
HeleShaw cell containing a more viscous liquid, Proc. Roy. Soc.
London. Ser. A 245 (1958), 312–329. (2 plates). MR 0097227
(20 #3697)
 21.
M.
V. Safonov, The abstract CauchyKovalevskaya theorem in a weighted
Banach space, Comm. Pure Appl. Math. 48 (1995),
no. 6, 629–637. MR 1338472
(96g:35002), http://dx.doi.org/10.1002/cpa.3160480604
 22.
W.
A. Green and Jingyu
Shi, Degenerate deformations and uniqueness in highly elastic
networks, Quart. Appl. Math. 50 (1992), no. 3,
501–516. MR 1178430
(93g:73065)
 23.
C.
Sulem, P.L.
Sulem, C.
Bardos, and U.
Frisch, Finite time analyticity for the two and threedimensional
KelvinHelmholtz instability, Comm. Math. Phys. 80
(1981), no. 4, 485–516. MR 628507
(83d:76012)
 24.
G. Tryggvason, Numerical simulations of the RayleighTaylor problem, J. Computational Phys. 75 (1988), 253.
 25.
G. Tryggvason and H. Aref, Numerical experiments on HeleShaw flows with a sharp interface, J. Fluid Mech. 136 (1983), 130.
 1.
 G. R. Baker, Russel E. Caflisch, and Michael Siegel, Singularity formation during RayleighTaylor instability, Journal of Fluid Mechanics 252 (1993), 5178. MR 94e:76034
 2.
 J. T. Beale, T. Y. Hou, and J. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46 (1993), 12691301. MR 95c:76016
 3.
 , On the wellposedness of two fluid interfacial flows with surface tension, in Singularities in Fluids, Plasmas and Optics (R. C. Caflisch and G. Papanicolau, editors), NATO ASI Series, Kluwer, 1993, pp. 1138.
 4.
 , Convergence of boundary integral methods for water waves, SIAM J. Num. Anal. 33 (1996), 17971843. MR 89b:76009
 5.
 R. Caflisch and O. Orellana, Long time existence for a slightly perturbed vortex sheet, Comm. Pure Appl. Math. 39 (1986), 807838. MR 87m:76018
 6.
 , Singular solutions and illposedness for the evolution of vortex sheets, SIAM J. Math. Anal. 20 (1989), 293307. MR 90d:76020
 7.
 R. E. Caflisch, A simplified version of the abstract CauchyKowalewski Theorem with weak singularities, Bull. Amer. Math. Soc. 23 (1990), 495500. MR 91f:35008
 8.
 Russel E. Caflisch and John S. Lowengrub, Convergence of the vortex method for vortex sheets, SIAM J. Numer. Anal. 26 (1989), 10601080. MR 91g:76073
 9.
 S. J. Cowley, G. R. Baker, and S. Tanveer, On the formation of Moore curvature singularities in vortex sheets, J. Fluid Mech., submitted.
 10.
 W. S. Dai and M. J. Shelley, A numerical study of the effect of surface tension and noise on an expanding HeleShaw bubble, Phys. Fluids A 5 (1993), pp. 14651496.
 11.
 A. J. DeGregoria and L. W. Schwartz, A boundary integral method for two phase displacement in HeleShaw cells, J. Fluid Mech. 164 (1986), 383400. MR 87h:76073
 12.
 J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane, J. Diff. Eqn. 73 (1988), 215224. MR 89h:35262
 13.
 H. Dym and H. McKean, Fourier Series and Integrals, Academic Press, New York, 1972. MR 56:945
 14.
 T. Y. Hou, J. Lowengrub, and R. Krasny, Convergence of a point vortex method for vortex sheets, SIAM J. Numer. Anal. 28 (1991), 308320. MR 92d:65153
 15.
 R. Krasny, A study of singularity formation in a vortex sheet by the pointvortex approximation, J. Fluid Mechanics 167 (1986), 6593. MR 87g:76028
 16.
 D. I. Meiron, G. R. Baker, and S. A. Orszag, Analytic structure of vortex sheet dynamics, part 1, KelvinHelmholtz Instability, J. Fluid Mech. 114 (1982), 283298. MR 83c:76017
 17.
 D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. London A 365 (1979), 105119. MR 80b:76006
 18.
 L. Nirenberg, An abstract form of the nonlinear CauchyKowalewski theorem, J. Diff. Geom. 6 (1972), 561576. MR 48:683
 19.
 T. Nishida, A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977), 629633. MR 80a:58013
 20.
 P. G. Saffman and G. I. Taylor, The penetration of a fluid into a porous medium of a HeleShaw cell containing a more viscous fluid, Proc. Royal Soc. London Ser. A 245 (1958), 312329. MR 20:3697
 21.
 M. V. Safonov, The abstract CauchyKovalevskaya theorem in a weighted Banach space, Comm. Pure Appl. Math. 48 (1995), 629637. MR 96g:35002
 22.
 M. J. Shelley, A study of singularity formation in vortex sheet motion by a spectrally accurate vortex method, J. Fluid Mech. 244 (1992), 493526. MR 93g:73065
 23.
 C. Sulem, P. L. Sulem, C. Bardos, and U. Frisch, Finite time analyticity for the two and three dimensional KelvinHelmholtz instability, Comm. Math. Phys. 80 (1981), 485516. MR 83d:76012
 24.
 G. Tryggvason, Numerical simulations of the RayleighTaylor problem, J. Computational Phys. 75 (1988), 253.
 25.
 G. Tryggvason and H. Aref, Numerical experiments on HeleShaw flows with a sharp interface, J. Fluid Mech. 136 (1983), 130.
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
65M25,
76C05
Retrieve articles in all journals
with MSC (1991):
65M25,
76C05
Additional Information
Russel E. Caflisch
Affiliation:
Department of Mathematics, UCLA, Box 951555, Los Angeles, California 900951555
Thomas Y. Hou
Affiliation:
Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125
John Lowengrub
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Address at time of publication:
Department of Mathematics, University of North Carolina, Phillips Hall, Chapel Hill, North Carolina 27599
DOI:
http://dx.doi.org/10.1090/S0025571899011084
PII:
S 00255718(99)011084
Keywords:
Vortex sheets,
point vortices,
numerical filtering,
discrete CauchyKowalewski theorem
Received by editor(s):
December 16, 1997
Published electronically:
May 21, 1999
Additional Notes:
The first author’s research was supported in part by the Army Research Office under grants #DAAL0391G0162 and #DAAH049510155, the second author’s by ONR Grant N000149610438 and NSF Grant DMS9704976, and the third author’s by the McKnight Foundation, the National Science Foundation, the Sloan Foundation, the Department of Energy, and the University of Minnesota Supercomputer Institute
Article copyright:
© Copyright 1999 American Mathematical Society
