Prime clusters and Cunningham chains

Author:
Tony Forbes

Journal:
Math. Comp. **68** (1999), 1739-1747

MSC (1991):
Primary 11A41, 11Y11

DOI:
https://doi.org/10.1090/S0025-5718-99-01117-5

Published electronically:
May 24, 1999

MathSciNet review:
1651752

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the methods and results of a search for certain types of prime clusters. In particular, we report specific examples of prime 16-tuplets and Cunningham chains of length 14.

**1.**L. E. Dickson,*A new extension of Dirichlet's theorem on prime numbers*, Messenger of Mathematics**33**(1904), 155-161.**2.**G. H. Hardy and J. E. Littlewood,*Some problems of `Partitio Numerorum'; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1922), 1-70.**3.**D. Hensley and I. Richards,*Primes in intervals*, Acta Arith.**25**(1974), 375-391. MR**53:305****4.**D. M. Gordon and G. Rodemich,*Dense admissible sets*, Algorithmic Number Theory: III; Lecture Notes in Computer Science, Volume 1423, Springer Verlag, Berlin, 1998.**5.**C. K. Caldwell and H. Dubner,*Primorial, factorial and multifactorial primes*, Math. Spectrum**26**(1993/94), 1-7.**6.**K.-H. Indlekofer and A. Járai,*Largest known twin primes*, Math. Comp.**65**(1996), 427-428. MR**96d:11009****7.**Tony Forbes,*Large prime triplets*, Math. Spectrum**29**(1996/97), 65.**8.**Warut Roonguthai,*Large prime quadruplets*, M500**153**(December 1996), 4-5.**9.**A. O. L. Atkin, Personal communications, 9 June 1997 and earlier.**10.**John Brillhart, D. H. Lehmer and J. L. Selfridge,*New primality criteria and factorizations of*, Math. Comp.**29**(1975), 620-647. MR**52:5546****11.**J. Brillhart et al.,*Factorizations of , , up to high powers*, Contemporary Mathematics, vol. 22, 2nd ed., Amer. Math. Soc., 1988. MR**90d:11009****12.**R. K. Guy,*Unsolved problems in number theory*, 2nd ed., Springer-Verlag, New York, 1994. MR**96e:11002****13.**Tony Forbes,*Prime -tuplets-15*, M500**156**(July 1997), 14-15.**14.**Günter Löh,*Long chains of nearly doubled primes*, Math. Comp.**53**(1989), 751-759. MR**90e:11015**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
11A41,
11Y11

Retrieve articles in all journals with MSC (1991): 11A41, 11Y11

Additional Information

**Tony Forbes**

Affiliation:
22 St. Albans Road, Kingston upon Thames, Surrey, KT2 5HQ England

DOI:
https://doi.org/10.1090/S0025-5718-99-01117-5

Received by editor(s):
July 24, 1997

Published electronically:
May 24, 1999

Article copyright:
© Copyright 1999
American Mathematical Society