Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tau method approximation
of a generalized Epstein-Hubbell
elliptic-type integral

Author: H. G. Khajah
Journal: Math. Comp. 68 (1999), 1615-1621
MSC (1991): Primary 33C65, 41A10; Secondary 65D20
Published electronically: March 4, 1999
MathSciNet review: 1651763
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the evaluation of a recent generalization of the Epstein-Hubbell elliptic-type integral using the tau method approximation with a Chebyshev polynomial basis. This also leads to an approximation of Lauricella's hypergeometric function of three variables. Numerical results are given for polynomial approximations of degree 6.

References [Enhancements On Off] (What's this?)

  • 1. A. Al-Zamel and S. Kalla. Epstein-Hubbell elliptic-type integral and its generalizations. Appl. Math. Comp., 77:9-32, 1996. MR 97c:33017
  • 2. L.F. Epstein and J.H. Hubbell. Evaluation of a generalized elliptic-type integral. J. Res. NBS, 67B:1-17, 1963. MR 28:4152
  • 3. H. Exton. Multiple Hypergeometric Functions and Applications. Ellis Horwood Ltd., New York, 1976. MR 54:10699
  • 4. M.L. Glasser and S.L. Kalla. Recursion relations for a class of generalized elliptic-type integrals. Rev. Tec. Ing. Univ. Zulia, 12:47-50, 1989. MR 91b:33024
  • 5. J.H. Hubbell, R.L. Bach, and R.J. Herbold. Radiation field from a circular disk source. J. Res. NBS, 65C:249-264, 1961.
  • 6. S.L. Kalla, S. Conde, and J.H. Hubbell. Some results on generalized elliptic-type integrals. Appl. Anal., 22:273-287, 1986. MR 88a:33002
  • 7. S.L. Kalla, C. Leubner, and J.H. Hubbell. Further results on generalized elliptic-type integrals. Appl. Anal., 25:269-274, 1987. MR 88i:33002
  • 8. S.L. Kalla and V.K. Tuan. Asymptotic formulas for generalized elliptic-type integrals. In Proc. of the Intl. Wkshp. on Recent Advances in Applied Maths., Kuwait, 1996. Kuwait Univ. - KFAS.
  • 9. C. Lanczos. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys., 17:123-199, 1938.
  • 10. C. Lanczos. Applied Analysis. Prentice-Hall, New Jersey, 1956. MR 15:823c
  • 11. E.L. Ortiz. The Tau Method. SIAM J. Numer. Anal., 6:480-492, 1969. MR 41:2934
  • 12. E.L. Ortiz. Canonical polynomials in the Lanczos' Tau Method. In B.K.P. Scaife, editor, Studies in Numerical Analysis, pages 73-93. Academic Press, New York, 1974. MR 57:14478
  • 13. Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 1994. Version 2.2.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 33C65, 41A10, 65D20

Retrieve articles in all journals with MSC (1991): 33C65, 41A10, 65D20

Additional Information

H. G. Khajah
Affiliation: Applied Sciences Department, College of Technical Studies – Paaet, P.O. Box 66814, Bayan 43759, Kuwait

Keywords: Tau method approximation, elliptic-type integrals, hypergeometric functions
Received by editor(s): May 16, 1998
Published electronically: March 4, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society