Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Tau method approximation
of a generalized Epstein-Hubbell
elliptic-type integral


Author: H. G. Khajah
Journal: Math. Comp. 68 (1999), 1615-1621
MSC (1991): Primary 33C65, 41A10; Secondary 65D20
Published electronically: March 4, 1999
MathSciNet review: 1651763
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the evaluation of a recent generalization of the Epstein-Hubbell elliptic-type integral using the tau method approximation with a Chebyshev polynomial basis. This also leads to an approximation of Lauricella's hypergeometric function of three variables. Numerical results are given for polynomial approximations of degree 6.


References [Enhancements On Off] (What's this?)

  • 1. A. Al-Zamel and S. Kalla, Epstein-Hubbell elliptictype integral and its generalizations, Appl. Math. Comput. 77 (1996), no. 1, 9–32. MR 1386688, 10.1016/0096-3003(95)00147-6
  • 2. Leo F. Epstein and J. H. Hubbell, Evaluation of a generalized elliptic-type integral, J. Res. Nat. Bur. Standards Sect. B 67B (1963), 1–17. MR 0160943
  • 3. Harold Exton, Multiple hypergeometric functions and applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1976. Foreword by L. J. Slater; Mathematics & its Applications. MR 0422713
  • 4. M. L. Glasser and S. L. Kalla, Recursion relations for a class of generalized elliptic integrals, Rev. Técn. Fac. Ingr. Univ. Zulia 12 (1989), no. 1, 47–49 (English, with Spanish summary). MR 1028970
  • 5. J.H. Hubbell, R.L. Bach, and R.J. Herbold. Radiation field from a circular disk source. J. Res. NBS, 65C:249-264, 1961.
  • 6. Shyam L. Kalla, Salvador Conde, and J. H. Hubbell, Some results on generalized elliptic-type integrals, Appl. Anal. 22 (1986), no. 3-4, 273–287. MR 860994, 10.1080/00036818608839623
  • 7. Shyam L. Kalla, C. Leubner, and J. H. Hubbell, Further results on generalized elliptic-type integrals, Appl. Anal. 25 (1987), no. 4, 269–274. MR 912185, 10.1080/00036818708839690
  • 8. S.L. Kalla and V.K. Tuan. Asymptotic formulas for generalized elliptic-type integrals. In Proc. of the Intl. Wkshp. on Recent Advances in Applied Maths., Kuwait, 1996. Kuwait Univ. - KFAS.
  • 9. C. Lanczos. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys., 17:123-199, 1938.
  • 10. C. Lanczos. Applied Analysis. Prentice-Hall, New Jersey, 1956. MR 15:823c
  • 11. Eduardo L. Ortiz, The tau method, SIAM J. Numer. Anal. 6 (1969), 480–492. MR 0258287
  • 12. Eduardo L. Ortiz, Canonical polynomials in the Lanczos tau method, Studies in numerical analysis (papers in honour of Cornelius Lanczos on the occasion of his 80th birthday), Academic Press, London, 1974, pp. 73–93. MR 0474847
  • 13. Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 1994. Version 2.2.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 33C65, 41A10, 65D20

Retrieve articles in all journals with MSC (1991): 33C65, 41A10, 65D20


Additional Information

H. G. Khajah
Affiliation: Applied Sciences Department, College of Technical Studies – Paaet, P.O. Box 66814, Bayan 43759, Kuwait
Email: hkhajah@kuc01.kuniv.edu.kw

DOI: http://dx.doi.org/10.1090/S0025-5718-99-01128-X
Keywords: Tau method approximation, elliptic-type integrals, hypergeometric functions
Received by editor(s): May 16, 1998
Published electronically: March 4, 1999
Article copyright: © Copyright 1999 American Mathematical Society