Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An atlas of regular thin geometries
for small groups

Author: Dimitri Leemans
Journal: Math. Comp. 68 (1999), 1631-1647
MSC (1991): Primary 51E24, 52B10, 20B99
Published electronically: May 17, 1999
MathSciNet review: 1654025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For some small groups, we give, up to isomorphism, an exhaustive list of all residually connected thin geometries on which these groups act regularly. We then show the utility of such an atlas by proving several results about smallest groups acting on a given diagram. The results have been obtained using a series of MAGMA programs.

References [Enhancements On Off] (What's this?)

  • 1. M. Aschbacher, Flag structures on Tits geometries, Geom. Dedicata 14 (1983), 21-31. MR 84m:51010
  • 2. F. Buekenhout, Diagrams for geometries and groups, J. Combin. Theory Ser. A 27 (1979), 121-151. MR 83f:51003
  • 3. -, (g, d, d*)-gons, Finite Geometries (Marcel Dekker, New York) (Johnson N.L., Kallaher M.J., and Long C.T., eds.), 1983, pp. 93-111. MR 84e:51013
  • 4. F. Buekenhout (ed.), Handbook of incidence geometry, Elsevier, Amsterdam, 1995. MR 96e:51002
  • 5. F. Buekenhout and P. Cara, Some properties of inductively minimal flag-transitive geometries, Bull. Belg. Math. Soc. 5 (1998), 213-219.
  • 6. F. Buekenhout, P. Cara, and M. Dehon, Inductively minimal flag-transitive geometries, Mostly Finite Geometries (Johnson N.L., ed.), 1997, pp. 185-190. MR 88h:51020
  • 7. -, Geometries of small almost simple groups based on maximal subgroups, Bull. Belg. Math. Soc. - Simon Stevin Suppl. (1998). CMP 98:12
  • 8. F. Buekenhout, M. Dehon, and D. Leemans, All geometries of the Mathieu group M$_{11}$ based on maximal subgroups, Experiment. Math. 5 (1996), 101-110. MR 97h:51015
  • 9. -, An Atlas of residually weakly primitive geometries for small groups, Mém. Acad. Royale Belg., Classe des Sciences (1996), To appear.
  • 10. -, On flag-transitive incidence geometries of rank 6 for the Mathieu group M$_{12}$, Groups and Geometries (A. Pasini et al., eds.), Birkhäuser, 1998, pp. 39-54. CMP 99:01
  • 11. F. Buekenhout and D. Leemans, On the list of finite primitive permutation groups of degree $\leq$ 50, J. Symbolic Comput. 22 (1996), 215-225. MR 97g:20004
  • 12. -, On a geometry of Ivanov and Shpectorov for the O'Nan sporadic simple group, J. Combin. Theory Ser. A 85 (1999), 148-164.
  • 13. J. Cannon and W. Bosma, Handbook of MAGMA functions, Department of Pure Mathematics, University of Sydney, November 1994.
  • 14. P. Cara, Truncations of inductively minimal geometries, Preprint, 1997.
  • 15. P. Cara, S. Lehman and D. Pasechnik, On the number of inductively minimal geometries, Theoret. Comput. Sci. (to appear)
  • 16. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of finite groups, Oxford U.P., 1985. MR 88g:20025
  • 17. H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, second ed., Springer-Verlag, 1965. MR 30:4818
  • 18. M. Dehon, Classifying geometries with Cayley, J. Symbolic Comput. 17 (1994), 259-276. MR 91f:51007
  • 19. M. Dehon and X. Miller, The residually weakly primitive and (IP)$_2$ geometries of M$_{11}$, In preparation.
  • 20. -, The residually weakly primitive and (IP)$_2$ geometries of U(4,2), In preparation.
  • 21. M. Schönert et al., GAP Version 3.4, Lehrstuhl D für Mathematik, RWTH-Aachen, 1995.
  • 22. H. Gottschalk, A classification of geometries associated with PSL(3,4), Diplomarbeit, Giessen, 1995.
  • 23. H. Gottschalk and D. Leemans, The residually weakly primitive geometries of the Janko group J$_1$, Groups and Geometries (A. Pasini et al., ed.), Birkhäuser, 1998, pp. 65-79. CMP 99:01
  • 24. D. Leemans, The residually weakly primitive geometries of the dihedral groups, Atti Sem. Mat Fis. Univ. Modena (to appear).
  • 25. -, The rank 2 geometries of the simple Suzuki groups Sz(q), Beiträge Algebra Geom. 39 (1998), no. 1, 97-120. CMP 98:10
  • 26. -, Thin geometries for the Suzuki simple group Sz(8), Proc. Third Int. Conf. on Finite Geometries and Combinatorics (F. De Clerck et al., ed.), vol. 5, Bull. Belg. Math. Soc. - Simon Stevin, 1998, pp. 373-387. CMP 98:14
  • 27. -, The residually weakly primitive geometries of the Suzuki simple group Sz(8), Proceedings of Groups St Andrews 1997 in Bath (C.M. Campbell et al., ed.), CUP, To appear.
  • 28. P. McMullen and E. Schulte, Regular polytopes in ordinary space, Discrete Comput. Geom. 17 (1997), 449-478. MR 98d:52014
  • 29. J. Tits, Géométries polyédriques et groupes simples, Atti 2a Riunione Groupem. Math. Express. Lat. Firenze (1962), 66-88.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 51E24, 52B10, 20B99

Retrieve articles in all journals with MSC (1991): 51E24, 52B10, 20B99

Additional Information

Dimitri Leemans
Affiliation: Université Libre de Bruxelles, Département de Mathématique, C.P.216- Géométrie, Boulevard du Triomphe, B-1050 Bruxelles

Keywords: Incidence geometry, group theory, regular maps, polytopes
Received by editor(s): February 10, 1998
Published electronically: May 17, 1999
Additional Notes: This research was accomplished during a stay at the University of Sydney. We gratefully acknowledge support from the Fonds National de la Recherche Scientifique de Belgique and The University of Sydney.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society