Convergence behaviour of inexact Newton methods
Author:
Benedetta Morini
Journal:
Math. Comp. 68 (1999), 16051613
MSC (1991):
Primary 65H10
Published electronically:
March 10, 1999
MathSciNet review:
1653970
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we investigate local convergence properties of inexact Newton and Newtonlike methods for systems of nonlinear equations. Processes with modified relative residual control are considered, and new sufficient conditions for linear convergence in an arbitrary vector norm are provided. For a special case the results are affine invariant.
 1.
J.
M. Ortega and W.
C. Rheinboldt, Iterative solution of nonlinear equations in several
variables, Academic Press, New YorkLondon, 1970. MR 0273810
(42 #8686)
 2.
John
E. Dennis Jr. and Robert
B. Schnabel, Numerical methods for unconstrained optimization and
nonlinear equations, Prentice Hall Series in Computational
Mathematics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983. MR 702023
(85j:65001)
 3.
Ron
S. Dembo, Stanley
C. Eisenstat, and Trond
Steihaug, Inexact Newton methods, SIAM J. Numer. Anal.
19 (1982), no. 2, 400–408. MR 650059
(83b:65056), http://dx.doi.org/10.1137/0719025
 4.
T. Steihaug, QuasiNewton methods for large scale nonlinear problems, Ph.D. Thesis, School of Organization and Management, Yale University, 1981.
 5.
José
Mario Martínez and Li
Qun Qi, Inexact Newton methods for solving nonsmooth
equations, J. Comput. Appl. Math. 60 (1995),
no. 12, 127–145. Linear/nonlinear iterative methods and
verification of solution (Matsuyama, 1993). MR 1354652
(96h:65076), http://dx.doi.org/10.1016/03770427(94)00088I
 6.
Peter
Deuflhard, Global inexact Newton methods for very large scale
nonlinear problems, Impact Comput. Sci. Engrg. 3
(1991), no. 4, 366–393. MR 1141306
(92i:65093), http://dx.doi.org/10.1016/08998248(91)90004E
 7.
Peter
N. Brown and Alan
C. Hindmarsh, Reduced storage matrix methods in stiff ODE
systems, Appl. Math. Comput. 31 (1989), 40–91.
Numerical ordinary differential equations (Albuquerque, NM, 1986). MR 996040
(90f:65104), http://dx.doi.org/10.1016/00963003(89)901100
 8.
Kenneth
R. Jackson, The numerical solution of large systems of stiff IVPs
for ODEs, Appl. Numer. Math. 20 (1996), no. 12,
5–20. Workshop on the method of lines for timedependent problems
(Lexington, KY, 1995). MR 1385232
(97a:65061), http://dx.doi.org/10.1016/01689274(95)00114X
 9.
T.
J. Ypma, Local convergence of inexact Newton methods, SIAM J.
Numer. Anal. 21 (1984), no. 3, 583–590. MR 744174
(85k:65043), http://dx.doi.org/10.1137/0721040
 10.
T.
J. Ypma, Local convergence of difference
Newtonlike methods, Math. Comp.
41 (1983), no. 164, 527–536. MR 717700
(85f:65053), http://dx.doi.org/10.1090/S00255718198307177004
 11.
J.
L. M. van Dorsselaer and M.
N. Spijker, The error committed by stopping the Newton iteration in
the numerical solution of stiff initial value problems, IMA J. Numer.
Anal. 14 (1994), no. 2, 183–209. MR 1268991
(95c:65097), http://dx.doi.org/10.1093/imanum/14.2.183
 12.
T.
J. Ypma, Affine invariant convergence results for Newton’s
method, BIT 22 (1982), no. 1, 108–118. MR 654747
(84a:58018), http://dx.doi.org/10.1007/BF01934400
 13.
P.
Deuflhard and G.
Heindl, Affine invariant convergence theorems for Newton’s
method and extensions to related methods, SIAM J. Numer. Anal.
16 (1979), no. 1, 1–10. MR 518680
(80i:65068), http://dx.doi.org/10.1137/0716001
 1.
 J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equation in several variables, Academic Press, New York, 1970. MR 42:8686
 2.
 J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall, Englewood Cliff, NJ, 1983. MR 85j:65001
 3.
 R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal.,19, 1982, pp. 400408. MR 83b:65056
 4.
 T. Steihaug, QuasiNewton methods for large scale nonlinear problems, Ph.D. Thesis, School of Organization and Management, Yale University, 1981.
 5.
 J.M. Martinez, L.Qi, Inexact Newton methods for solving nonsmooth equations, J. Comput. Appl. Math., 60, 1995, pp. 127145. MR 96h:65076
 6.
 P. Deuflhard, Global inexact Newton methods for very large scale nonlinear problems, Impact Comput. Sci. and Engrg., 3, 1991, pp. 366393. MR 92i:65093
 7.
 P.N. Brown, A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, Appl. Math. Comput., 31, 1989, pp. 4091. MR 90f:65104
 8.
 K.R. Jackson, The numerical solution of large systems of stiff IVPs for ODEs, Appl. Numer. Math., 20, 1996, pp. 520. MR 97a:65061
 9.
 T.J.Ypma, Local convergence of inexact Newton methods, SIAM, J. Numer. Anal., 21, 1984, pp. 583590. MR 85k:65043
 10.
 T.J.Ypma, Local convergence of difference Newtonlike methods, Math. Comp. 41, 1983, pp. 527536. MR 85f:65053
 11.
 J.L.M. van Dorsselaer, M.N. Spijker, The error committed by stopping the Newton iteration in the numerical solution of stiff initial value problems, IMA J. of Numer. Anal., 14, 1994, pp 183209. MR 95c:65097
 12.
 T.J.Ypma, Affine invariant convergence for Newton's methods, BIT, 22, 1982, pp. 108118. MR 84a:58018
 13.
 P.Deuflhard, G. Heindl, Affine invariant convergence theorem for Newton methods and extension to related methods, SIAM J. Numer. Anal., 16, 1979, pp. 110. MR 80i:65068
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
65H10
Retrieve articles in all journals
with MSC (1991):
65H10
Additional Information
Benedetta Morini
Affiliation:
Dipartimento di Energetica “Sergio Stecco”, via C. Lombroso 6/17, 50134 Firenze, Italia
Email:
morini@riscmat.de.unifi.it
DOI:
http://dx.doi.org/10.1090/S0025571899011357
PII:
S 00255718(99)011357
Keywords:
Systems of nonlinear equations,
inexact methods,
affine invariant conditions
Received by editor(s):
January 23, 1997
Received by editor(s) in revised form:
January 6, 1998
Published electronically:
March 10, 1999
Article copyright:
© Copyright 1999
American Mathematical Society
