Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Determining the small solutions
to $S$-unit equations


Author: N. P. Smart
Journal: Math. Comp. 68 (1999), 1687-1699
MSC (1991): Primary 11Y50, 11D61
DOI: https://doi.org/10.1090/S0025-5718-99-01140-0
Published electronically: March 11, 1999
MathSciNet review: 1653990
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we generalize the method of Wildanger for finding small solutions to unit equations to the case of $S$-unit equations. The method uses a minor generalization of the LLL based techniques used to reduce the bounds derived from transcendence theory, followed by an enumeration strategy based on the Fincke-Pohst algorithm. The method used reduces the computing time needed from MIPS years down to minutes.


References [Enhancements On Off] (What's this?)

  • 1. J. Buchmann, M. Jacobson, and E. Teske. On some computational problems in finite abelian groups. Math. Comp., 66:1663-1687, 1997. MR 98a:11185
  • 2. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp., 44:463-471, 1985. MR 86e:11050
  • 3. K. Gy\H{o}ry. On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helvetici, 54:585-600, 1979. MR 81g:11031
  • 4. N.P. Smart. The solution of triangularly connected decomposable form equations. Math. Comp., 64:819-840, 1995. MR 95f:11110
  • 5. N.P. Smart. S-unit equations, binary forms and curves of genus 2. Proc. London Math. Soc., 75:271-307, 1997. MR 98d:11072
  • 6. E. Teske. A space efficient algorithm for group structure computation. Math. Comp., 67:1637-1663, 1998. MR 99a:11146
  • 7. N. Tzanakis and B.M.M. de Weger. How to explicitly solve a Thue-Mahler equation. Compositio Math., 84:223-288, 1992; 89 (1993), 241-242. MR 93k:11025; MR 95a:11030
  • 8. B.M.M. de Weger. Solving exponential diophantine equations using lattice basis reduction algorithms. J. Number Theory, 26:325-367, 1987; 31 (1989), 88-89. MR 88k:11097; MR 90a:11040
  • 9. B.M.M. de Weger. Algorithms for Diophantine Equations. Centre for Mathematics and Computer Science Amsterdam, 1989. CWI-Tract 65. MR 90m:11205
  • 10. K. Wildanger. Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern mit einer Anwendung auf die Bestimmung aller ganzen Punkte einer Mordellschen Kurve. PhD thesis, Technischen Universität Berlin, 1997.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11Y50, 11D61

Retrieve articles in all journals with MSC (1991): 11Y50, 11D61


Additional Information

N. P. Smart
Affiliation: Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS12 6QZ, U.K.
Email: nsma@hplb.hpl.hp.com

DOI: https://doi.org/10.1090/S0025-5718-99-01140-0
Keywords: $S$-unit equations
Received by editor(s): December 1, 1997
Published electronically: March 11, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society