On the equation , pseudoperfect numbers, and perfectly weighted graphs
Authors:
William Butske, Lynda M. Jaje and Daniel R. Mayernik
Journal:
Math. Comp. 69 (2000), 407420
MSC (1991):
Primary 11D68; Secondary 11Y50, 05C50
Published electronically:
August 19, 1999
MathSciNet review:
1648363
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We present all solutions to the equation with at most eight primes, improve the bound on the nonsolvability of the ErdösMoser equation , and discuss the computational search techniques used to generate examples of perfectly weighted graphs.
 [1]
D.
Borwein, J.
M. Borwein, P.
B. Borwein, and R.
Girgensohn, Giuga’s conjecture on primality, Amer. Math.
Monthly 103 (1996), no. 1, 40–50. MR 1369150
(97b:11004), http://dx.doi.org/10.2307/2975213
 [2]
Lawrence
Brenton and Robert
R. Bruner, On recursive solutions of a unit fraction equation,
J. Austral. Math. Soc. Ser. A 57 (1994), no. 3,
341–356. MR 1297008
(95i:11024)
 [3]
Lawrence
Brenton and Daniel
Drucker, On the number of solutions of
∑^{𝑠}ⱼ₌₁(1/𝑥ⱼ)+1/(𝑥₁\cdots𝑥_{𝑠})=1,
J. Number Theory 44 (1993), no. 1, 25–29. MR 1219482
(94b:11029), http://dx.doi.org/10.1006/jnth.1993.1030
 [4]
Lawrence
Brenton and Daniel
Drucker, Perfect graphs and complex surface singularities with
perfect local fundamental group, Tohoku Math. J. (2)
41 (1989), no. 4, 507–525. MR 1025319
(91g:14025), http://dx.doi.org/10.2748/tmj/1178227724
 [5]
Lawrence
Brenton and Richard
Hill, On the Diophantine equation
1=∑1/𝑛ᵢ+1/∏𝑛ᵢ and a class of
homologically trivial complex surface singularities, Pacific J. Math.
133 (1988), no. 1, 41–67. MR 936356
(89d:32023)
 [6]
Lawrence
Brenton and MiKyung
Joo, On the system of congruences
∏_{𝑗≠𝑖}𝑛ⱼ≡1\bmod𝑛ᵢ,
Fibonacci Quart. 33 (1995), no. 3, 258–267. MR 1337798
(96k:11039)
 [7]
Zhen
Fu Cao, Rui
Liu, and Liang
Rui Zhang, On the equation
∑^{𝑠}ⱼ₌₁(1/𝑥ⱼ)+(1/(𝑥₁\cdots𝑥_{𝑠}))=1
and Znám’s problem, J. Number Theory 27
(1987), no. 2, 206–211. MR 909837
(89d:11023), http://dx.doi.org/10.1016/0022314X(87)90062X
 [8]
Richard
K. Guy, Unsolved problems in number theory, 2nd ed., Problem
Books in Mathematics, SpringerVerlag, New York, 1994. Unsolved Problems in
Intuitive Mathematics, I. MR 1299330
(96e:11002)
 [9]
Z. Ke and Q. Sun, On the representation of by unit fractions, Sichuan Daxue Xuebao 1 (1964), 1329.
 [10]
Pieter
Moree, Diophantine equations of ErdősMoser type, Bull.
Austral. Math. Soc. 53 (1996), no. 2, 281–292.
MR
1381770 (97b:11048), http://dx.doi.org/10.1017/S0004972700017007
 [11]
Leo
Moser, On the diophantine equation
1ⁿ+2ⁿ+3ⁿ+\cdots+(𝑚1)ⁿ=𝑚ⁿ.,
Scripta Math. 19 (1953), 84–88. MR 0054627
(14,950g)
 [12]
David
Mumford, The topology of normal singularities of an algebraic
surface and a criterion for simplicity, Inst. Hautes Études
Sci. Publ. Math. 9 (1961), 5–22. MR 0153682
(27 #3643)
 [1]
 D. Borewein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's conjecture on primality, Amer. Math. Monthly 103 (1996), 4050. MR 97b:11004
 [2]
 L. Brenton and R. Bruner, On recursive solutions of a unit fraction equation, J. Aust. Math. Soc. 57 (1994), 341356. MR 95i:11024
 [3]
 L. Brenton and D. Drucker, On the number of solutions of , J. Number Theory 44 No. 2 (1993), 2529. MR 94b:11029
 [4]
 , Perfect graphs and complex surface singularities with perfect local fundamental group, Tôhoku Math. J. 41 (1989), 507525. MR 91g:14025
 [5]
 L. Brenton and R. Hill, On the Diophantine equation and a class of homologically trivial complex surface singularities, Pacific J. Math. 133 (1988), 4167. MR 89d:32023
 [6]
 L. Brenton and M. K. Joo, On the system of congruences , The Fibonacci Quarterly 33 No. 3 (JuneJuly 1995), 258266. MR 96k:11039
 [7]
 Z. Cao, R. Liu and L. Zhang, On the equation and Znám's problem, J. Number Theory 27 No. 2 (1987), 206211. MR 89d:11023
 [8]
 R. Guy, Unsolved Problems in Number Theory (2nd ed.), vol. I, SpringerVerlag, New York, 1994. MR 96e:11002
 [9]
 Z. Ke and Q. Sun, On the representation of by unit fractions, Sichuan Daxue Xuebao 1 (1964), 1329.
 [10]
 P. Moree, Diophantine equations of ErdösMoser type, Bull. Austral. Math. Soc. 53 (1996), 281292. MR 97b:11048
 [11]
 L. Moser, On the Diophantine equation , Scripta Math. 19 (1953), 8488. MR 14:950g
 [12]
 D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1961), 522. MR 27:3643
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
11D68,
11Y50,
05C50
Retrieve articles in all journals
with MSC (1991):
11D68,
11Y50,
05C50
Additional Information
William Butske
Affiliation:
Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Address at time of publication:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
Email:
butske@math.purdue.edu
Lynda M. Jaje
Affiliation:
Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Address at time of publication:
EDS Office Centre, Mailstop 2061, 300 E. Big Beaver Road, Troy, Michigan 48083
Email:
lynda.jaje@eds.com
Daniel R. Mayernik
Affiliation:
Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Email:
mayernik@math.wayne.edu
DOI:
http://dx.doi.org/10.1090/S0025571899010881
PII:
S 00255718(99)010881
Received by editor(s):
June 19, 1996
Received by editor(s) in revised form:
March 17, 1998
Published electronically:
August 19, 1999
Article copyright:
© Copyright 1999
American Mathematical Society
