Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the equation $\sum _{p|N}\frac{1}{p}+\frac{1}{N}=1$,
pseudoperfect numbers,
and perfectly weighted graphs


Authors: William Butske, Lynda M. Jaje and Daniel R. Mayernik
Journal: Math. Comp. 69 (2000), 407-420
MSC (1991): Primary 11D68; Secondary 11Y50, 05C50
DOI: https://doi.org/10.1090/S0025-5718-99-01088-1
Published electronically: August 19, 1999
MathSciNet review: 1648363
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present all solutions to the equation $\sum _{p|N}\frac{1}{p}+\frac{1}{N}=1$ with at most eight primes, improve the bound on the nonsolvability of the Erdös-Moser equation $\sum _{j=1}^{m-1}j^n=m^n$, and discuss the computational search techniques used to generate examples of perfectly weighted graphs.


References [Enhancements On Off] (What's this?)

  • [1] D. Borewein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's conjecture on primality, Amer. Math. Monthly 103 (1996), 40-50. MR 97b:11004
  • [2] L. Brenton and R. Bruner, On recursive solutions of a unit fraction equation, J. Aust. Math. Soc. 57 (1994), 341-356. MR 95i:11024
  • [3] L. Brenton and D. Drucker, On the number of solutions of $\sum^s_{j=1}(\frac{1}{x_j}) +\frac{1}{(x_1\dotsc x_s)}=1$, J. Number Theory 44 No. 2 (1993), 25-29. MR 94b:11029
  • [4] -, Perfect graphs and complex surface singularities with perfect local fundamental group, Tôhoku Math. J. 41 (1989), 507-525. MR 91g:14025
  • [5] L. Brenton and R. Hill, On the Diophantine equation $1=\sum (\frac{1}{n_i})+\frac{1}{(\prod n_i)}$ and a class of homologically trivial complex surface singularities, Pacific J. Math. 133 (1988), 41-67. MR 89d:32023
  • [6] L. Brenton and M. K. Joo, On the system of congruences $\prod _{j\not=i}n_j\equiv 1\mod n_i$, The Fibonacci Quarterly 33 No. 3 (June-July 1995), 258-266. MR 96k:11039
  • [7] Z. Cao, R. Liu and L. Zhang, On the equation $\sum^s_{j=1} (\frac{1}{x_j})+\frac{1}{(x_1\dotsc x_s)}=1$ and Znám's problem, J. Number Theory 27 No. 2 (1987), 206-211. MR 89d:11023
  • [8] R. Guy, Unsolved Problems in Number Theory (2nd ed.), vol. I, Springer-Verlag, New York, 1994. MR 96e:11002
  • [9] Z. Ke and Q. Sun, On the representation of $1$ by unit fractions, Sichuan Daxue Xuebao 1 (1964), 13-29.
  • [10] P. Moree, Diophantine equations of Erdös-Moser type, Bull. Austral. Math. Soc. 53 (1996), 281-292. MR 97b:11048
  • [11] L. Moser, On the Diophantine equation $1^n+2^n+3^n+\dotsb+ (m-1)^n=m^n$, Scripta Math. 19 (1953), 84-88. MR 14:950g
  • [12] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1961), 5-22. MR 27:3643

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11D68, 11Y50, 05C50

Retrieve articles in all journals with MSC (1991): 11D68, 11Y50, 05C50


Additional Information

William Butske
Affiliation: Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Address at time of publication: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
Email: butske@math.purdue.edu

Lynda M. Jaje
Affiliation: Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Address at time of publication: EDS Office Centre, Mailstop 2061, 300 E. Big Beaver Road, Troy, Michigan 48083
Email: lynda.jaje@eds.com

Daniel R. Mayernik
Affiliation: Department of Mathematics, Wayne State University, 1150 FAB, Detroit, Michigan 48202
Email: mayernik@math.wayne.edu

DOI: https://doi.org/10.1090/S0025-5718-99-01088-1
Received by editor(s): June 19, 1996
Received by editor(s) in revised form: March 17, 1998
Published electronically: August 19, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society