Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of relative class numbers
of CM-fields by using Hecke $L$-functions


Author: Stéphane Louboutin
Journal: Math. Comp. 69 (2000), 371-393
MSC (1991): Primary 11M20, 11R42; Secondary 11R29
DOI: https://doi.org/10.1090/S0025-5718-99-01096-0
Published electronically: May 21, 1999
MathSciNet review: 1648395
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an efficient technique for computing values at $s=1$ of Hecke $L$-functions. We apply this technique to the computation of relative class numbers of non-abelian CM-fields $\mathbf{ N}$ which are abelian extensions of some totally real subfield $\mathbf{ L}$. We note that the smaller the degree of $\mathbf{ L}$ the more efficient our technique is. In particular, our technique is very efficient whenever instead of simply choosing $\mathbf{ L} =\mathbf{ N}^+$ (the maximal totally real subfield of $\mathbf{ N}$) we can choose $\mathbf{ L}$ real quadratic. We finally give examples of computations of relative class numbers of several dihedral CM-fields of large degrees and of several quaternion octic CM-fields with large discriminants.


References [Enhancements On Off] (What's this?)

  • [Cox] D. A. Cox. Primes of the form $x^2+ny^2$. John Wiley&Sons, 1989. MR 90m:11016
  • [FQ] A. Fröhlich and J. Queyrut. On the functional equation of the Artin $L$-function for characters of real representations. Inventiones math. 20 (1973), 125-138. MR 48:253
  • [Fro] A. Fröhlich. Artin root numbers and normal integral bases for quaternion fields. Invent. math. 17 (1972), 143-166. MR 48:2115
  • [Hid] H. Hida. Elementary theory of $L$-functions and Eisenstein series. London Mathematical Society, Student Texts 26, Cambridge University Press, 1993. MR 94j:11044
  • [Lef] Y. Lefeuvre. Corps diédraux à multiplication complexe principaux. Preprint Univ. Caen (1997)
  • [Lou1] S. Louboutin. Minoration au point $1$ des fonctions $L$ et détermination des corps sextiques abéliens totalement imaginaires principaux. Acta Arith. 72 (1992), 109-124. MR 93h:11100
  • [Lou2] S. Louboutin. Calcul des nombres de classes relatifs : application aux corps octiques quaternioniques à multiplication complexe. C. R. Acad. Sci. Paris 317 (1993), 643-646. MR 94j:11111
  • [Lou3] S. Louboutin. Calcul des nombres de classes relatifs de certains corps de classes de Hilbert. C. R. Acad. Sci. Paris 319 (1994), 321-325. MR 95g:11111
  • [Lou4] S. Louboutin. Calcul du nombre de classes des corps de nombres. Pacific J. Math. 171 (1995), 455-467. MR 97a:11176
  • [Lou5] S. Louboutin. Determination of all quaternion octic CM-fields with class number 2. J. London Math. Soc. 54 (1996), 227-238. MR 97g:11122
  • [Lou6] S. Louboutin. Computation of relative class numbers of CM-fields. Math. Comp. 66 (1997), 1185-1194. MR 97k:11157
  • [Lou7] S. Louboutin. Computation of relative class numbers of imaginary abelian number fields. Exp. Math. 7 (1998), 293-303.
  • [LO] S. Louboutin and R. Okazaki. The class number one problem for some non-abelian normal CM-fields of $2$-power degees. Proc. London Math. Soc. (3) 76 (1998), 523-548. CMP 98:11
  • [LOO] S. Louboutin, R. Okazaki and M. Olivier. The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. MR 97k:11149
  • [LP] S. Louboutin and Y.-H. Park. Class number problems for dicyclic CM-fields. Acta Arith., to appear.
  • [LPL] S. Louboutin, Y.-H. Park and Y. Lefeuvre. Construction of the real dihedral number fields of degree $2p$. Applications. Acta Arith. (to appear).
  • [Mar] J. Martinet. Sur l'arithmétique des extensions à groupe de Galois diédral d'ordre $2p.$. Ann. Inst. Fourier (Grenoble) 19 (1969), 1-80. MR 41:6820
  • [Mey] C. Meyer. Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern. Akademie-Verlag. Berlin, 1957. MR 19:531f
  • [Oka1] R. Okazaki. On evaluation of $L$-functions over real quadratic fields. J. Math. Kyoto Univ. 31 (1991), 1125-1153. MR 93b:11154
  • [Oka2] R. Okazaki. An elementary proof for a theorem of Thomas and Vasquez. J. Nb. Th. 55 (1995), 197-208. MR 96m:11099
  • [Shi] T. Shintani. On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo 23 (1976), 393-417. MR 55:266
  • [Sie] C. L. Siegel. Lectures on Advanced Analytic Number Theory. Tata Institute of Fundamental Research, Bombay, 1965. MR 41:6760
  • [Wa] L.C. Washington. Introduction to Cyclotomic Fields. Springer-Verlag, Grad.Texts Math. 83, 1982; 2nd ed., 1997. MR 85g:11001; MR 97h:11130
  • [Zag] D. Zagier. A Kronecker limit formula for real quadratic fields. Math. Ann. 213 (1975),153-184. MR 51:3123

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11M20, 11R42, 11R29

Retrieve articles in all journals with MSC (1991): 11M20, 11R42, 11R29


Additional Information

Stéphane Louboutin
Affiliation: Université de Caen, Campus 2, Département de Mathématiques, 14032 Caen cedex, France
Email: louboutimath.unicaen.fr

DOI: https://doi.org/10.1090/S0025-5718-99-01096-0
Keywords: CM-field, relative class number, Hecke $L$-function, ray class field, dihedral field
Received by editor(s): April 16, 1997
Published electronically: May 21, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society