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Abstract. We conjecture that 7,373,170,279,850 is the largest integer which
cannot be expressed as the sum of four nonnegative integral cubes.

Introduction

We consider one aspect of Waring’s problem for cubes, namely the representation
of nonnegative integers as sums of nonnegative integral cubes. Dickson [6] showed
in 1939 that every positive integer is the sum of 8 nonnegative cubes, with the only
exceptions being 23 and 239. Linnik [9] proved that every sufficiently large integer
is a sum of 7 cubes; Watson [12] simplified the proof and McCurley [3] gave an
effective and explicit proof of this result.

Using the traditional symbol G(3) to denote the smallest n such that every
sufficiently large integer is a sum of n nonnegative cubes, Linnik’s result may be
reformulated as G(3) ≤ 7. On the other hand, it is easy to see that G(3) ≥ 4:
indeed, cubes are congruent to 0, 1 or −1 modulo 9, so that integers which are
congruent to 4 or 5 modulo 9 require at least 4 cubes. Moreover, Davenport [4]
has shown that up to x, every integer is a sum of 4 nonnegative cubes with the
exception of at most o(x) terms.

We say that an integer is Ck if it can be represented as a sum of k nonnegative
cubes. Western [13] gave heuristic support to the conjecture G(3) = 4 and also
conjectured that the largest integer which is C5 and not C4 is located between 1012

and 1014. We present here some support for the following conjecture:

Conjecture 1. The integer N = 7, 373, 170, 279, 850 is the largest integer which
cannot be expressed as the sum of four nonnegative integral cubes.

Work of Bohman and Fröberg [2] and Romani [10] suggests that there are exactly
15 integers which are C8 and not C7, the largest of which is 454; exactly 121 integers
which are C7 and not C6, the largest being 8,042; and 3,922 integers which are C6

and not C5, the largest being 1,290,740. Bohman and Fröberg also gave some
arguments in favour of the conjecture G(3) = 4 and proposed the estimate 112
millions for the number of integers which are C5 and not C4. Our computations
lead us to the following:
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Conjecture 2. There are exactly 113, 936, 676 positive integers which are not the
sum of four nonnegative integral cubes.

1. The method

The basic principle is to find N1 such that N1 is not C4 but all the integers in
the interval (N1, κN1], for some “security coefficient” κ, are C4, and then declare
N1 to be the candidate for being the largest integer which is not C4.

Our choice for κ was 10; we are thankful to P. Purnaba for having performed
many simulations on pseudo-cubes sequences to provide us with a decent expecta-
tion that 10 is a secure choice (cf. the Appendix). Another argument in favour of
this choice comes from the computations we performed on actual cubes.

However, this principle cannot be implemented in such a direct way: it is eas-
ily checked that 7,373,170,279,850 is not C4 (we are thankful to P. Zimmermann,
who checked this point independently of us). Thus, implementing our principle
would require us to check that all integers between N + 1 and 7.4 · 1013 are C4,
computations that cannot be performed with current computers and algorithms.

We modify this basic principle by inserting the irregularity of the distribution
of cubes in arithmetic progressions, keeping the same security coefficient κ = 10.
As we already noticed, cubes are badly distributed modulo 9: the number ρ(k, 9)
is the number of solutions of the congruence

k3
1 + k3

2 + k3
3 + k3

4 ≡ k mod 9,

are given by the following table.

k 0 ±1 ±2 ±3 ±4
ρ(k, 9)/93 19/9 16/9 10/9 4/9 1/9

This means that it is easier to represent, as C4, integers which are not congruent
to ±4 modulo 9. We give in section 2 the results for those cases; let us simply
mention here that we found that the number M = 75, 377, 772, 852 is not C4 but
that any integer between M +1 and 8.8 · 1011, which is not congruent to ±4 modulo
9, is C4. We are thus left with checking integers up to 7.4 · 1013 which are congruent
to ±4 modulo 9: we have thus won a factor 2/9, ... which is still too large.

For the remaining classes modulo 9, we went one step further in the arithmetic
and considered classes modulo 7 (since 3 divides (7−1), cubes are badly distributed
modulo 7). Here again, some classes could be dealt with in a reasonable time (for
classes modulo ±4 modulo 9 and 0,±1,±2 modulo 7, the largest non-C4 found
turned out to be around 1.4 · 1012). In the four remaining classes, the largest
exceptions turned out to be between 5 · 1012 and 7.4 · 1012. This part is presented
in section 3.

Section 4 deals with the conjectured number of non-C4 numbers (Conjecture 2).
In section 5, we give some heuristic support to our conjectures by using the arith-
metic refinement of the Erdős-Rényi model we introduced in [5]. We finally give
an application of our computations to the determination of an interval containing
only C5 numbers.

We close this section with two remarks concerning the computations. To deter-
mine which elements in a given interval are C4, we represent them by their address
in a string of bits: initially, we give the value 0 to these bits; we build strings rep-
resenting C2 numbers and add those strings to give the value 1 to one bit as soon
as its address is seen as a sum of two C2 numbers.
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At the end of the process, we check which bits are 0 and which are 1: when all
are 1, then all the integers in the interval are C4. The reader will easily see how to
modify this algorithm to take into account congruence conditions. Computations
have been performed on DEC-Alpha or SUN-Sparc stations of different laboratories.
We are specially thankful to the Laboratoire de Mathématiques Appliquées de
Bordeaux for helping in getting access to a CRAY-t3d computer (CEA Grenoble)
as well as to a DEC-Alpha station. The total CPU time involved is around 10,000
hours, and the computations were performed over a full year.

2. The high residue classes modulo 9

In what follows, an exception will mean a positive integer which is not a sum of
four nonnegative cubes.

We first look at the residues classes 0,±1,±2,±3 modulo 9. In these classes,
the likely exception N0 is not too large, and the computations, which consist in
checking that any integers between N0 and 10N0 are sums of four cubes, are swiftly
performed.

The largest exceptions N0 that we obtained and the corresponding sifted intervals
are given in Table 1. As expected, these numbers are congruent to ±3 modulo 7,
which as a matter of fact are the lowest classes modulo 7.

Table 1. The last exception in the classes 0,±1,±2,±3 modulo 9.

class ρ(k, 9)/93 largest non-C4 integer mod 7 checking up to

0 19/9 396 953 532 3 4, 5 · 1011

1 16/9 252 716 950 3 3 · 109

2 10/9 1 761 425 102 3 3.7 · 1010

3 4/9 44 322 060 990 4 5.3 · 1011

6 4/9 75 377 772 852 4 8.8 · 1011

7 10/9 4 045 088 338 4 4.5 · 1010

8 16/9 505 945 682 4 5.4 · 109

As expected, we notice at once that the size of the largest exception found in a
given class k strongly depends on the number ρ(k, 9).

Table 2. The ten largest exceptions in the classes 0,±1,±2,±3
modulo 9.

0 [9] 1 [9] 2 [9] 3 [9]

109 563 030 130 242 934 905 760 614 30 018 581 436
114 717 348 130 576 555 931 528 658 30 205 280 802
133 218 684 134 916 274 934 479 389 30 756 454 158
133 262 559 147 350 458 1 017 344 108 30 794 631 438
133 297 182 152 177 806 1 021 218 446 31 702 361 898
136 987 722 171 820 702 1 123 934 213 33 141 245 610
146 692 746 173 788 444 1 155 472 427 41 155 522 446
152 955 828 198 367 831 1 189 684 226 41 319 931 908
188 204 580 204 605 740 1 680 416 174 41 918 435 499
396 953 532 252 716 950 1 761 425 102 44 322 060 990
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Table 2 (continued)

-3 [9] -2 [9] -1 [9]

39 129 270 513 1 043 547 838 132 173 261
40 086 582 225 1 049 202 214 133 045 622
40 686 577 404 1 072 947 949 148 532 723
43 149 463 206 1 090 092 580 165 687 092
43 234 286 343 1 135 860 478 178 270 145
45 241 168 038 1 146 854 860 192 810 230
48 420 314 610 1 148 123 959 218 223 134
57 604 173 756 1 216 888 054 230 528 546
66 945 773 058 1 312 833 274 249 325 766
75 377 772 852 4 045 088 338 505 945 682

Table 2 gives an idea of the distribution of the exceptions in every class, and
in particular shows that two consecutive exceptions in a given class are relatively
closed, independently of the class.

3. The laborious cases: the classes 4 and 5 modulo 9

For these two classes, our computations means were not adapted to obtain the
likely exceptions in the same way. We went around these difficulties by considering
the 14 residue classes modulo 63 coming from the classes ±4 modulo 9, and by
applying the same algorithm to each of them.

In Table 3, we show the fourteen classes modulo 63 to be studied.

Table 3. The low residues modulo 63.

mod 9 4 5
mod 7

0 49 14
1 22 50
2 58 23
3 31 59
4 4 32
5 40 5
6 13 41

We first calculate the number of solutions to the congruence

k3
1 + k3

2 + k3
3 + k3

4 ≡ k mod 7,

denoted by ρ(k, 7), which is given in the following table.

k 0 ±1 ±2 ±3
ρ(k, 7)/73 595/343 336/343 378/343 189/343

Looking at this table, we may expect that the last exceptions should be congruent
to ±3 modulo 7, and thus belong to classes ±4 or ±31 modulo 63, which will be
called the low classes modulo 63.

In the following subsections, we collect the largest exceptions in the fourteen
classes, setting together classes having the same 4-cubes representation coefficient
modulo 63. We shall notice that these exceptions essentially belong to the low
classes modulo 13 (that is 1,5,8,12), modulo 19 (that is 2,3,5,14,16,17) and modulo
8 (that is 2,4,6).
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3.1. The residue class 0 modulo 7. The classes are 14 and 49 modulo 63: the
representation ratio is s(k, 63) = ρ(k, 63)/633 = (1/9)× (595/343) = 0.192 . . .

Table 4. The last exception in the classes 14 and 49 modulo 63.

class largest non-C4 integer mod 13 checking up to
14 83 593 932 170 8 1.132 · 1012

49 96 127 145 590 8 1012

Table 5. The ten largest exceptions in class 14 and 49 modulo 63.

class 14 [13] [8] [19] class 49 [13] [8] [19]

69 453 814 262 1 6 10 59 419 179 652 1 4 16
70 862 250 074 5 2 3 61 296 801 916 12 4 5
72 465 894 914 10 2 3 65 244 097 030 8 6 13
74 436 498 878 1 6 5 67 505 819 458 12 2 4
74 928 861 266 12 2 3 72 110 490 340 5 4 5
77 461 820 870 5 6 10 73 731 109 018 8 2 3
78 715 215 194 5 2 16 74 583 499 522 12 2 5
80 564 235 458 5 2 16 76 969 316 956 12 4 17
80 912 821 010 8 2 16 85 533 027 412 1 4 16
83 593 932 170 8 2 10 96 127 145 590 8 6 2

3.2. The residue classes 1 and -1 modulo 7. The classes are 13, 22, 41 and 50
modulo 63: the representation ratio is s(k, 63) = ρ(k, 63)/633 = (1/9)×(336/343) =
0.108 . . .

Table 6. The last exception in the classes 13,22,41 and 50 modulo 63.

class largest non-C4 integer mod 13 checking up to

13 907 751 255 494 5 9.2 · 1012

22 788 129 237 722 8 8.6 · 1012

41 1 427 500 392 170 8 14.364 · 1012

50 936 140 172 206 5 9.41 · 1012

Table 7. The ten largest exceptions in the classes 13, 22, 41 and
50 modulo 63.

class 13 [13] [8] [19] class 22 [13] [8] [19]

515 415 341 713 12 1 1 463 699 078 942 8 6 3
515 716 372 660 8 4 2 466 743 009 244 5 4 3
517 437 367 537 12 1 16 470 521 253 749 1 5 2
521 809 634 254 12 6 14 521 760 696 430 12 6 15
591 096 733 492 5 4 6 526 065 260 638 8 6 14
632 123 355 982 1 6 16 542 997 708 394 11 2 11
644 670 291 838 1 6 17 560 084 910 988 5 4 17
660 658 929 916 11 4 3 576 155 440 372 5 4 17
663 859 461 082 12 2 17 666 721 591 726 8 6 16
907 751 255 494 5 6 2 788 129 237 722 8 2 17
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Table 7 (continued)

class 41 [13] [8] [19] class 50 [13] [8] [19]

540 717 468 836 12 4 5 505 720 130 378 8 2 5
541 298 339 798 8 6 3 527 295 430 670 8 6 17
542 474 783 339 8 3 5 528 887 658 902 5 6 15
556 064 232 170 5 2 5 546 630 271 790 5 6 14
559 284 113 660 12 4 2 558 710 089 988 11 4 17
563 987 764 094 1 6 5 572 694 654 722 8 2 14
599 435 462 660 8 4 16 588 152 293 646 8 6 2
767 912 798 498 1 2 16 725 000 004 338 12 2 3
856 645 138 166 12 6 5 858 098 874 326 5 6 14

1 427 500 392 170 8 2 17 936 140 172 206 5 6 5

3.3. The residue classes 2 and -2 modulo 7. The classes are 5, 23, 40 and 58
modulo 63: the representation ratio is s(k, 63) = ρ(k, 63)/633 = (1/9)×(378/343) =
0.122 . . . .

Table 8. The ten largest exceptions in the classes 13, 22, 41 and
50 modulo 63.

class largest non-C4 integer mod 13 checking up to

5 706 796 978 900 12 7.071 · 1012

23 913 105 904 972 1 9.141 · 1012

40 515 338 220 164 1 5.163 · 1012

58 647 984 206 102 12 6.491 · 1012

Table 9. The ten largest exceptions in the classes 5, 23, 40 and
58 modulo 63.

class 5 [13] [8] [19] class 23 [13] [8] [19]

367 699 306 658 8 2 5 408 491 662 658 1 2 10
368 491 257 545 8 1 17 416 597 533 340 1 4 5
375 244 504 556 12 4 2 425 893 618 292 12 4 6
378 197 041 262 1 6 16 443 781 861 791 8 7 5
384 438 283 052 5 4 16 452 739 991 118 12 6 3
401 492 794 379 1 3 3 507 587 062 334 1 6 17
409 896 282 794 11 2 2 519 302 630 660 8 4 3
455 907 401 906 8 2 2 559 222 247 390 1 6 12
506 893 225 298 5 2 3 680 757 914 426 5 2 3
706 796 978 900 12 4 14 913 105 904 972 1 4 16

class 40 [13] [8] [19] class 58 [13] [8] [19]

336 882 895 060 10 4 7 353 850 173 266 5 2 15
345 086 371 642 12 2 14 370 423 987 978 5 2 5
352 712 730 046 1 6 3 372 336 481 876 8 4 16
382 298 697 373 8 5 5 378 914 738 827 1 3 17
402 682 599 814 1 6 16 404 782 452 580 12 4 9
408 265 707 946 5 2 5 415 747 301 566 12 6 10
410 885 502 214 5 6 2 454 167 517 162 8 2 16
420 483 613 324 8 4 14 515 331 316 642 12 2 17
465 966 625 045 12 5 17 586 783 317 388 8 4 2
515 338 220 164 1 4 3 647 984 206 102 12 6 2
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3.4. The low classes modulo 63 and the likely largest exception. We
now deal with the four remaining classes, those corresponding to the classes ±3
modulo 7 and ±4 modulo 9. As expected the examination of these classes has
revealed the probable largest number not representable as a sum of four cubes:
7,373,170,279,850. It was found in the class 32 modulo 63.

The representation ratio for the classes ±4,±31 modulo is
s(k, 63) = ρ(k, 63)/633 = (1/9)× (189/343) = 3/49 = 0.061 . . .

Table 10. The last exception in the classes 4, 31, 32 and 59 mod-
ulo 63.

class largest non-C4 integer classe mod 13 checking up to

4 6 496 802 093 380 1 6.5 · 1013

31 5 284 099 948 018 8 5.35 · 1013

32 7 373 170 279 850 11 7.39 · 1013

59 6 021 018 973 490 1 6.3 · 1013

Table 11. The ten largest exceptions in the classes 4, 31, 32 and
59 modulo 63.

class 4 [13] [8] [19] class 31 [13] [8] [19]

4 101 746 020 978 8 2 3 4 097 950 646 674 1 2 16
4 176 071 432 950 1 6 3 4 243 508 161 924 5 4 2
4 258 171 417 378 8 2 3 4 351 566 387 514 8 2 3
4 260 747 448 381 8 5 5 4 455 736 568 986 1 2 5
4 261 453 542 490 1 2 2 4 626 872 001 454 1 6 17
4 335 278 405 602 1 2 5 4 662 046 058 890 12 2 14
4 960 851 010 042 5 2 3 4 799 676 641 980 12 4 4
5 041 706 085 742 1 6 3 4 986 551 506 702 12 6 2
5 269 052 852 662 1 6 14 5 263 158 954 910 12 6 17
6 496 802 093 380 1 4 3 5 284 099 948 018 8 2 17

class 32 [13] [8] [19] class 59 [13] [8] [19]

4 075 773 601 316 1 4 5 3 802 208 355 158 5 6 16
4 086 898 600 082 12 2 2 3 825 977 414 234 1 2 2
4 364 287 298 060 1 4 16 3 870 821 254 730 1 2 9
4 592 346 735 722 5 2 16 3 889 185 641 834 12 2 3
4 639 786 626 164 1 4 17 4 058 748 783 302 5 6 17
4 668 204 750 962 12 2 14 4 145 452 151 270 1 6 2
5 521 284 141 881 1 1 5 4 798 029 384 914 12 2 17
5 676 158 919 722 5 2 3 4 798 065 694 586 8 2 5
6 196 484 961 230 5 6 3 5 368 106 543 558 5 6 3
7 373 170 279 850 11 2 6 6 021 018 973 490 1 2 16

4. The number of exceptions

In Table 12, we have gathered for each class modulo 63 the probable number of
integers which cannot be written as a sum of four nonnegative cubes. This leads to
Conjecture 2 stated in the introduction.

Looking at Table 12, we observe that there are more exceptions in the class 5
modulo 9 than in the class 4, for a given class modulo 7. This phenomenon can be
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Table 12. The likely number of exceptions by class modulo 63.

non-C4 total
by class 0 [7] 1 [7] 2 [7] 3 [7] 4 [7] 5 [7] 6 [7] by class
mod 63 mod 9

0 [9] 36 334 212 2565 2634 256 296 6333
0 [63] 36 [63] 9 [63] 45 [63] 18 [63] 54 [63] 27 [63]

1 [9] 62 471 382 4119 4006 407 555 10002
28 [63] 1 [63] 37 [63] 10 [63] 46 [63] 19 [63] 55 [63]

2 [9] 391 2551 1773 17329 17441 2088 2785 44358
56 [63] 29 [63] 2 [63] 38 [63] 11 [63] 47 [63] 20 [63]

3 [9] 8828 52346 35949 307600 308974 37884 53794 805375
21 [63] 57 [63] 30 [63] 3 [63] 39 [63] 12 [63] 48 [63]

4 [9] 644283 3747040 2536522 21167119 21169677 2618012 3799510 55682163
49 [63] 22 [63] 58 [63] 31 [63] 4 [63] 40 [63] 13 [63]

5 [9] 663407 3870947 2572186 21402004 21403611 2656879 3927902 56496936
14 [63] 50 [63] 23 [63] 59 [63] 32 [63] 5 [63] 41 [63]

6 [9] 9197 57399 36666 315565 317700 38543 58398 833468
42 [63] 15 [63] 51 [63] 24 [63] 60 [63] 33 [63] 6 [63]

7 [9] 415 3025 1789 18330 18489 2074 3325 47447
7 [63] 43 [63] 16 [63] 52 [63] 25 [63] 61 [63] 34 [63]

8 [9] 64 592 368 4295 4238 420 617 10594
35 [63] 8 [63] 44 [63] 17 [63] 53 [63] 26 [63] 62 [63]

total
by class 1326683 7734705 5185847 43238926 43246770 5356563 7847182 113936676
mod 7

explained by the fact that up to a given bound x there are more cubes of the form
(3k + 1)3 than of the form (3k + 2)3, and thus the number of sums of four cubes in
the class 4 modulo 9 is greater than that in the class 5 modulo 9. The numbers of
exceptions in the respective classes naturally follow the same pattern. Similar but
less pronounced phenomena also appear when comparing classes 3 and 4 modulo 7,
classes ±1 modulo 9, classes ±2 modulo 9 or as well as classes ±3 modulo 9. Thus,
it is not really an accident that the largest exception has been found in the class
32 modulo 63.

We also may look at the residue modulo 13 of the largest exceptions. The number
of solutions of the congruence

k3
1 + k3

2 + k3
3 + k3

4 ≡ k mod 13,

denoted by ρ(k, 13) takes the following values.

k 0 ±1 ±2 ±3 ±4 ±5 ±6
ρ(k, 13) 3133 1794 2106 2106 2457 1794 2457

ρ(k, 13)/133 1.426 0.816 0.958 0.958 1.118 0.816 1.118

We observe that all the largest exceptions in the low classes 4, 31, 32, 59 modulo
63 are congruent to 1, 5, 8 or 12 modulo 13, except, unexpectedly, the largest
one 7,373,170,279,850: it belongs to the class 11 modulo 13 whose representation
coefficient 0.958 is rather close to the minimum one 0.816.

Similar remarks can be done when the modulus is 8.
k 0 ±1 ±2 ±3 4

ρ(k, 8) 704 512 448 512 448
ρ(k, 8)/83 1.375 1 0.875 1 0.875

As expected, the exceptions in tables 5, 7, 9 and 11 are principally in the low class
modulo 8, that is 2, 4 or 8. Such a result is true for modulus 19.
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Last but not least, the size of the last exceptions as well as the total number of
exceptions are consistent with the expectations of Western [13] and Bohman and
Fröberg [2], as mentioned in the introduction.

5. Probabilistic study

We propose here some heuristics for supporting the numerical results that we
previously obtained. We use an arithmetic refinement to the probabilistic model of
Erdős and Rényi [7]; this trick has been introduced as part of the sums of 3 cubes
program [5] and fits with the sums of four cubes.

5.1. The Erdős-Rényi model. Let (Ω, T , P ) be a probability space and (ξn)n≥1

be a sequence of independent Bernoulli random variables such that

P (ξn = 1) = αn and P (ξn = 0) = 1− αn,

where αn = 1/(3n2/3), n ≥ 1.
We construct a random sequences of integers (νl)l≥1 by considering the set of

n for which ξn = 1. We easily check that almost everywhere this sequence has
infinitely many elements and satisfies νl ∼ l3 when l tends to infinity.

Let Rn be the random variable counting the number of ways to represent n as a
sum

n = νl1 + νl2 + νl3 + νl4 with 1 ≤ l1 < l2 < l3 < l4.

We then have

Rn =
∑

h=(h1,... ,h4)∈H
ξh1 . . . ξh4 ,

where

H = H(n) = {h = (h1, . . . , h4), 1 ≤ h1 < · · · < h4 ≤ n, h1 + · · ·+ h4 = n}.
Here we deal with the probability

P (Rn = 0) = p

( ⋂
h∈H

{ξh = 1}
)

(1)

that n is not a sum of four distinct elements of (νl).
A way to bound it is to use Janson’s inequality [8], leading, under the assumption

p(A) ≤ ε for any A ∈ A, to∏
A∈A

p(A) ≤ p

( ⋂
A∈A

A

)
≤
∏

A∈A
p(A) exp

( δ

1− ε

)
,(2)

where δ :=
∑

A1,A2dependent p(A1 ∩ A2).
Moreover we have∏

A∈A
p(A) =

∏
h∈H

(1 − αh) ≤ exp

(
−
∑
h∈H

αh

)
= exp(−µ),

where µ = µ(n) = ERn.
Using Lemma 2.9 of [11], we easily obtain

µ(n) ∼ γn1/3, when n tends to infinity,(3)

with γ = Γ( 1
3 )3

334! .
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Unfortunately the term δ is not negligible, and even has the same order as µ;
thus Janson’s inequality does not give a satisfactory bound.

Since our aim is only to give arguments in consideration of the results in the
previous sections, we identify P (Rn = 0) to e−µ, as it would be the case if the
events A were independent.

So if we use the estimate

P (Rn = 0) � exp(−γn1/3),

we will obtain the value of n0 beyond which P (Rn = 0) < 1/n. This condition
holds for n0 = 3 · 108, a bad result in view of our computations. We now turn to
the arithmetic model, which should give a much better estimate.

5.2. The arithmetic model. The modulus K being fixed, we consider for any k,
1 ≤ k ≤ K, a sequence (ξ(k)

n )n≥1 of independent Bernoulli random variables such
that

P (ξ(k)
n = 1) = αn = 1− P (ξ(k)

n = 0),

where αn = 1
3(nK)2/3 . This gives a family of K random increasing sequences(

ν
(k)
l

)
l≥1

by considering for each k the integers n for which ξ
(k)
n = 1. To each

of them, we associate the sequence
(
µ

(k)
l

)
l≥1

defined by

µ
(k)
l = ν

(k)
l K + m(k3),

where m(k3) is the smallest nonnegative integer congruent to k3 modulo K. The
sequences

(
µ

(k)
l

)
l≥1

give a probabilistic model of the cubes in the arithmetic pro-

gressions modulo K: almost everywhere we have µ
(k)
l ∼ (Kl + k)3 when l tends to

infinity.
Let k0 be a residue class modulo K, denote by k = (k1, k2, k3, k4) a solution to

the congruence

k3
1 + k3

2 + k3
3 + k3

4 ≡ k0 (mod K),(4)

and let C(k0) be the set of solutions to (4), ρ(k0, K) its cardinality.
For k = (k1, . . . , k4) ∈ C(k0) and n congruent to k0 modulo K, we denote by

Rk(n) the number of representations of n as

n = µ
(k1)
l1

+ · · ·+ µ
(k4)
l4

,(5)

with

µ
(k1)
l1

< · · · < µ
(k4)
l4

.(6)

We finally denote by Rn the total number of representations obtained by sum-
ming over all solutions k ∈ C(k0),

Rn =
∑

k∈C(k0)

Rk(n).(7)

The class k0 being fixed, for n large enough, Rk(n) denotes the number of rep-
resentations of Nk := (n−m(k3

1)− · · · −m(k3
4))/K as

Nk = ν
(k1)
l1

+ · · ·+ ν
(k4)
l4

,

with ν
(k1)
l1

< ν
(k2)
l2

< · · · < ν
(k4)
l4

.
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This implies that

Rk(n) =
∑

h∈H(Nk)

ξ
(k1)
h1

. . . ξ
(k4)
h4

,(8)

where H(N) = {h = (h1, . . . , h4), 1 ≤ h1 < · · · < h4 ≤ N, h1 + · · ·+ h4 = N}.
We then have

Rn =
∑

k∈C(k0)

∑
h∈H(Nk)

ξ
(k1)
h1

. . . ξ
(k4)
h4

=
∑

k∈C(k0),h∈H(Nk)

θk,h,(9)

where θk,h = ξ
(k1)
h1

. . . ξ
(k4)
h4

.
As in the simple model, we shall identify P (Rn = 0) to e−µ, where

µ =
∑
k,h

P ({θk,h = 1}).

The estimate of µ(n) leads to

µ(n) ∼ γs(n, K)n1/3 when n tends to infinity,(10)

where s(n, K) denotes the 4-cubes representation coefficient ρ(n, K)/K3.
We thus shall use the following estimate:

P (Rn = 0) � exp
(
−γs(n, K)n1/3

)
.(11)

5.3. The size of the likely largest exception. Let α ≥ 1. We first obtain the
following properties of the function s(k, K):

If p ≡ 2 mod 3,

min
n

s(n, pα) = 1− 1
p3

.

If p ≡ 1 mod 3, let us write 4p = a2 + 27b2 with a ≡ 1 mod 3. We then have

min
n

s(n, pα) = 1− 27|b|+ 5a + 12
2p2

.(12)

We now compute, for each residue k modulo 63,

sk = min
n≡k mod 63

K≥1

s(n, K).

A way to estimate the probable size of the last exception in each class modulo 63
is to locate it where P (Rn = 0) becomes smaller than 63/n.

Using estimate (11), we shall just compute the value of n for which exp(−γskn1/3)
and 63/n are equal. Let us denote

a := min
n

(K,21)=1

s(n, K)

=
∏

p≡2 mod 3

(
1− 1

p3

) ∏
p≡1 mod 3

p>7

(
1− 27|b|+ 5a + 12

2p2

)
= 0.64919 · · · ;

(13)

then

tk := min
α≥1

n≡k mod 9

s(n, 3α),
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and

sk := min
α≥1

n≡k mod 7

s(n, 7α).

The value of tk and sk are listed below.

k 0 ±1 ±2 ±3 ±4
tk 2 16/9 10/9 4/9 1/9

k 0 ±1 ±2 ±3
sk 594/343 48/49 54/49 27/49

This leads to Table 13, which gathers for each class modulo 63 the values of uk =
tk1sk2 , where |k1| ≤ 4, |k2| ≤ 3, k ≡ k1 mod 9 and k ≡ k2 mod 7.

Table 13. The values of uk = tk1sk2 .

k1 mod 9 0 ±1 ±2 ±3 ±4
k2 mod 7

0 1188/343 1056/343 660/343 264/343 66/343
±1 96/49 256/147 160/147 64/147 16/147
±2 108/49 96/49 60/49 24/49 6/49
±3 54/49 48/49 30/49 12/49 3/49

To take into account the distribution irregularities of the cubes in arithmetic
progressions, we are led to consider

sk := min
n≡k mod 63

K≥1

s(n, K) = auk,

for any k. This gives the size of the integer nk for which exp(−skγnk
1/3) � 63/nk.

Table 14. Size of the last exception nk given by the arithmetic model.

k mod 9 0 ±1 ±2 ±3 ±4
k mod 7

0 4.78 e 6 7.71 e 6 4.9 e 7 1.50 e 9 2.07 e 11
±1 4.57 e 7 7.19 e 7 4.21 e 8 1.17 e 10 1.48 e 12
±2 2.90 e 7 4.57 e 7 2.72 e 8 7.69 e 9 9.86 e 11
±3 4.02 e 8 6.22 e 8 3.45 e 9 8.91 e 10 1.05 e 13

These estimates can be compared with the largest exceptions found in each class
modulo 63 given in Table 15.

These results show at least that our probabilistic model fits very well with our
computation. However we remark that the last exception found in the class 47
modulo 63 (2 mod 9, -2 mod 7) is greater than the corresponding value given in
Table 14. As a matter of fact it is in this class that we observe the largest ratio
between two consecutive exceptions.
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Table 15. The last found exceptions in the residue classes modulo 63

mod 9 0 1 2 3 4
mod 7

0 587 286 1 410 346 23 375 702 508 517 814 96 127 145 590
1 40 748 310 15 607 054 108 609 194 5 134 614 906 788 129 237 722
2 7 712 154 14 621 266 118 905 194 5 192 800 356 647 984 206 102
3 396 953 532 252 716 950 1 761 425 102 41 918 435 499 5 284 099 948 018
−3 188 204 580 198 367 831 1 155 472 427 44 322 060 990 6 496 802 093 380
−2 11 919 591 11 066 914 326 262 620 3 403 279 794 515 338 220 164
−1 19 913 382 43 921 828 193 830 356 3 806 305 950 907 751 255 494

mod 9 −1 −2 −3 −4
mod 7

0 1 294 370 27 750 562 694 539 132 83 593 932 170
1 32 898 230 127 378 987 6 125 088 390 936 140 172 206
2 23 933 051 185 805 790 3 832 335 222 913 105 904 972
3 230 528 546 1 148 123 959 66 945 773 058 6 021 018 973 490
−3 505 945 682 4 045 088 338 75 377 772 852 7 373 170 279 850
−2 18 900 530 92 241 196 3 879 539 340 706 796 978 900
−1 19 566 665 133 245 286 5 103 923 460 1 427 500 392 170

6. Sums of five cubes

It is well-known since Linnik [9] (1943) and Watson [12] (1951) that every suffi-
cently large integer is a sum of 7 positive integral cubes. McCurley [3] in 1984 gave
an effective version of this result but his bound is too large, exp(exp(13.97)). F.
Bertaut, O. Ramaré and P. Zimmermann [1] improved this result in some particular
arithmetic progressions. By combining the greedy ascent method with the previous
results for sums of 4 cubes, we easily derive the following theorem.

Theorem. Every integer in the interval [1 290 741, 1016] is a sum of five nonnega-
tive integral cubes.

Proof. We shall establish the result for each class modulo 9.
In a first step, we simply verify on a computer that every integer in the interval

[1 290 741, 8 · 1010] is a C5 integer. This is done in the following way. To test the
interval [a, b[, we compute two vectors, one with all C2 integers from 0 to b, and
one with C3 integers from 0 to a variable bound M(b). Indeed, the average number
of representations of an integer n as a sum of 5 cubes is about γn2/3, so every large
integer has a representation as C2 + C3, the C3 integer being relatively small. We
then add the two vectors until the interval is completely represented. This took
about 120 hours on a DEC Alpha.

In a second step, we use special ranges of C4 integers in 4 classes modulo 9
observed beyond the last apparent exception found. In the class 0, this range has
been enlarged for the special need of this theorem.

We have
• every n ∈ [4 · 108; 4.5 · 1011] and congruent to 0 mod 9 is C4,
• every n ∈ [4.5 · 1010; 5.3 · 1011] and congruent to 3 mod 9 is C4,
• every n ∈ [7.6 · 1010; 8.8 · 1011] and congruent to 6 mod 9 is C4,
• every n ∈ [4.1 · 109; 4.5 · 1010] and congruent to 7 mod 9 is C4.

By adding successively to these ranges a cube k3 for 1 ≤ k ≤ K, we obtain large
ranges of C5 integers. The union of these successives ranges is still an interval when
K is not too large. This leads to the following technical lemma.

Lemma. If every integer n ∈ [a, b] (b− a ≥ 27) congruent to i mod 9 is C4, then

(i) every n ∈ [a, a + (b−a)3/2

27 ] congruent to i mod 9 is C5,
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(ii) every n ∈ [a, a + (b−a)3/2

27 ] congruent to i + 1 mod 9 is C5,

(iii) every n ∈ [a, a + (b−a)3/2

27 − (b−a)
3 ] congruent to i− 1 mod 9 is C5.

The proof is elementary, and is left to the reader.
When using the previous ranges in the classes 3 and 6 modulo 9, we get
• every n ∈ [4.5 · 1010; 1.2 · 1016] congruent to 2, 3, 4 mod 9 is C5,
• every n ∈ [7.6 · 1010; 2.6 · 1016] congruent to 5, 6, 7 mod 9 is C5.
Finally, when using the previous range in the class 0 we obtain
• every n ∈ [4 · 108; 1.1 · 1016] congruent to 0, 1, 8 mod 9 is C5.
These results combined with the results of the first step clearly establish the

theorem.
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Appendix

Simulations for sums of four pseudo-cubes

Abstract. We present here some simulations for sequences of pseudo-cubes, i.e. for
pseudo-random sequences which mimic the behaviour of sequences of cubes. Our
aim is to observe experimentally the distribution of the largest number which is not
a sum of four pseudo-cubes. Furthermore, we are interested in the distribution of
the gap between the ultimate exception and the previous one.

A.1. Construction of pseudo-cubes

We follow the Erdős-Rényi model described in [1]. For modeling sequences of
cubes, we have to generate a sequence (ξn)n≥1 of independent Bernoulli random
variables such that

P (ξn = 1) = αn and P (ξn = 0) = 1− αn,

where αn = 1/(3 n2/3). This leads to a sequence of pseudo-cubes denoted by (νl)l≥1.
Almost surely, by the Borel-Cantelli Lemma, only a finite number of integers will
not be represented as sums of four terms of pseudo-cubes (νl). For this sequence,
we experimentally note that the likely largest number n0 which is not sum of four
terms of this sequence (νl) will be very large and requires too much time to be
computed. So instead we take αn = 2/(3 n2/3); this choice makes the number n0

significantly smaller and enables us to perform many trials. Furthermore, it does
not affect the fundamental behaviour of our model. Indeed, as it can be seen in
subsection 5.1, the increase in αn only leads to replacing in (3) the factor γ by 16γ.
The value of n0 is then reduced by a factor of 10000.

The concrete realization of the sequence (νl) of pseudo-cubes is done as follows.
For each n, we take a random number x between 0 and 1. The value of ξn is chosen
to be 1 or 0, depending on whether x lies in [an, bn] ⊂ [0, 1] or not.

For constructing the interval [an, bn], we randomly choose a point denoted by a1

in [0,1]. We then compute the value of αn and set

[an, bn] =

 [a1, a1 + αn] if (a1 + αn) ≤ 1,

[a1, 1] ∪ [0, a1 + αn − 1] if (a1 + αn) > 1.

A.2. Distribution of the five last exceptions

We generated 4500 sequences of pseudo-cubes in the interval [1, N = 106]. For
each sequence, we computed all sums of 4 terms of this sequence and noted the five
apparent largest numbers which are not represented, denoted by n4 < n3 < n2 <
n1 < n0. From the last observed exception n0, we test all the interval [n0 , 50×n0]
in order to morally convince ourselves that it is the likely last exception. We get
the results shown in Table A-1.

We first notice that densities are not symmetric. The histograms and distribution
functions seems to show that we have for ni, i = 0, . . . 4, Γ-distributions with two
parameters; the experimental agreement is rather good but we have no theoretical
reason supporting such a Γ-distribution. The figures below show in the first column
the empirical distribution functions for n0 and n1, and in the second column the
histograms compared with the density of a Γ-distribution.
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Table A-1. Five last exceptions ni, (i = 0 . . . 4) for sums of 4
pseudo-cubes.

Statistics n0 n1 n2 n3 n4

minimum 56 50 48 44 42
lower quartile 7011 4926 4006 3451 3118
median 17222 12994 10951.5 9852.5 8979
mean 26861.9 20478.34 17587.65 15906.79 14656.75
upper quartile 35741.5 27328 23634.5 21159 19457
maximum 190752 181169 171348 138612 134196
variance 840460536 510788421 390318881 330451800 287465045
standard deviation 28990.7 22600.63 19756.49 18178.33 16954.79

Figure A-1. Empirical distribution functions and histograms of
n0 and n1 for sums of 4 pseudo-cubes.

The density of the Γ-distribution with parameters p and θ is given by

f(x; p, θ) =
1

Γ(p) θp
xp−1 exp{−x/θ}1{x≥0}, θ > 0.(1)

Let X = (X1, X2, . . . , Xn)T be a random vector in Rn, where Xi(i = 1, . . . , n)
are independent and identically distributed with distribution function F and density
function f . We denote by xi the realizations of Xi (i = 1, . . . , n). Estimates of p
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Table A-2. Parameters of the gamma distribution (p, θ) for the
five last exceptions for sums of four pseudo-cubes.

Parameter n0 n1 n2 n3 n4

p 0.88021 0.86390 0.82823 0.77149 0.79989
θ 28892.120 22500.829 20123.119 19994.318 18432.074

and θ can be obtained by finding the maximum of the likelihood function

L(X; p, θ) =
n∏

i=1

f(xi; p, θ).

This gives the following numerical estimates.

A.3. Distribution of n0/n1

Figure A-2 shows the ratio ni/n0 (i = 1, 2) as a plotted function of n0. We
clearly observe that when n0 increases, the minimum of (n0/n1) increases also
and is bigger than 0.1 with extremely few exceptions, which means that the last
exception is almost always smaller than ten times the previous one.

We also observe that the distribution of Z = (n0/n1)− 1 looks like a Γ-distribu-
tion with two parameters. By (1), the density of X = n0/n1 is then

f(x; p, θ) =
1

Γ(p) θp
(x− 1)p−1 exp{−(x− 1)/θ}, x ≥ 1, θ > 0.

In Figure A-3 we have plotted the histograms compared with the density of a
Γ-distribution.

From this, we have computed in Table A-3 under the hypothesis of a Γ-distribu-
tion for Z with estimated parameters p and θ, the probability that X = n0/n1 > k
for k = 5, . . . , 10.

More simulations have been performed around this subject and can be seen in [2].
From this, it appears that a large multiplicative gap between the two last exceptions
for sums of four cubes seems to be very unlikely. Therefore this appendix supports,

Figure A-2. Ratio ni/n0 (i = 1, 2) as a function of n0 for sums
of four pseudo-cubes.
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Figure A-3. Density of n0/n1 observed and estimated for sums
of four pseudo-cubes.

Table A-3. Probability
{
X = n0

n1
≥ k

}
for k = 5, . . . , 10.

gamma (p, θ)
X = n0

n1
p = 0.37510
θ = 0.65032

P̂ (X ≥ 5) 2.6531 · 10−4

P̂ (X ≥ 6) 5.0347 · 10−5

P̂ (X ≥ 7) 9.7559 · 10−6

P̂ (X ≥ 8) 1.9187 · 10−6

P̂ (X ≥ 9) 3.8155 · 10−7

P̂ (X ≥ 10) 7.6530 · 10−8

to some extent, the choice of the factor 10 in the method used in the body of this
paper for determining the likely largest number which is not a sum of four cubes.
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