Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Global superconvergence
for Maxwell's equations

Authors: Qun Lin and Ningning Yan
Journal: Math. Comp. 69 (2000), 159-176
MSC (1991): Primary 65N30; Secondary 35L15
Published electronically: March 10, 1999
MathSciNet review: 1654029
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the global superconvergence is analysed on two schemes (a mixed finite element scheme and a finite element scheme) for Maxwell's equations in $R^3$. Such a supercovergence analysis is achieved by means of the technique of integral identity (which has been used in the supercovergence analysis for many other equations and schemes) on a rectangular mesh, and then are generalized into more general domains and problems with the variable coefficients. Besides being more direct, our analysis generalizes the results of Monk.

References [Enhancements On Off] (What's this?)

  • 1. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • 2. G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. MR 0521262
  • 3. R. E. Ewing, R. D. Lazarov, and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal. 28 (1991), no. 4, 1015–1029. MR 1111451, 10.1137/0728054
  • 4. Qun Lin and Ning Ning Yan, Superconvergence of mixed element methods for Maxwell’s equations, Gongcheng Shuxue Xuebao 13 (1996), no. 5, suppl., 1–10, 66 (Chinese, with English and Chinese summaries). MR 1437477
  • 5. Q. Lin, N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers, 1996.
  • 6. Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements, Proc. of Sys. Sci. & Sys. Engrg., Great Wall (H. K.) Culture Publish Co., 1991, pp 217-229.
  • 7. Peter B. Monk, A mixed method for approximating Maxwell’s equations, SIAM J. Numer. Anal. 28 (1991), no. 6, 1610–1634. MR 1135758, 10.1137/0728081
  • 8. Peter Monk, Analysis of a finite element method for Maxwell’s equations, SIAM J. Numer. Anal. 29 (1992), no. 3, 714–729. MR 1163353, 10.1137/0729045
  • 9. Peter Monk, A comparison of three mixed methods for the time-dependent Maxwell’s equations, SIAM J. Sci. Statist. Comput. 13 (1992), no. 5, 1097–1122. MR 1177800, 10.1137/0913064
  • 10. Peter Monk, An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations, J. Comput. Appl. Math. 47 (1993), no. 1, 101–121. MR 1226366, 10.1016/0377-0427(93)90093-Q
  • 11. Peter Monk, Superconvergence of finite element approximations to Maxwell’s equations, Numer. Methods Partial Differential Equations 10 (1994), no. 6, 793–812. MR 1298123, 10.1002/num.1690100611
  • 12. J.-C. Nédélec, Mixed finite elements in 𝑅³, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, 10.1007/BF01396415
  • 13. A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), no. 2, 505–521. MR 1388486, 10.1137/0733027
  • 14. Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 35L15

Retrieve articles in all journals with MSC (1991): 65N30, 35L15

Additional Information

Qun Lin
Affiliation: Institute of Systems Science, Academia Sinica, Beijing, China

Ningning Yan
Affiliation: Institute of Systems Science, Academia Sinica, Beijing, China

Keywords: Maxwell's equations, superconvergence, finite element
Received by editor(s): September 22, 1997
Received by editor(s) in revised form: March 3, 1998
Published electronically: March 10, 1999
Article copyright: © Copyright 1999 American Mathematical Society