Global superconvergence

for Maxwell's equations

Authors:
Qun Lin and Ningning Yan

Journal:
Math. Comp. **69** (2000), 159-176

MSC (1991):
Primary 65N30; Secondary 35L15

Published electronically:
March 10, 1999

MathSciNet review:
1654029

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the global superconvergence is analysed on two schemes (a mixed finite element scheme and a finite element scheme) for Maxwell's equations in . Such a supercovergence analysis is achieved by means of the technique of integral identity (which has been used in the supercovergence analysis for many other equations and schemes) on a rectangular mesh, and then are generalized into more general domains and problems with the variable coefficients. Besides being more direct, our analysis generalizes the results of Monk.

**1.**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****2.**G. Duvaut and J.-L. Lions,*Inequalities in mechanics and physics*, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. MR**0521262****3.**R. E. Ewing, R. D. Lazarov, and J. Wang,*Superconvergence of the velocity along the Gauss lines in mixed finite element methods*, SIAM J. Numer. Anal.**28**(1991), no. 4, 1015–1029. MR**1111451**, 10.1137/0728054**4.**Qun Lin and Ning Ning Yan,*Superconvergence of mixed element methods for Maxwell’s equations*, Gongcheng Shuxue Xuebao**13**(1996), no. 5, suppl., 1–10, 66 (Chinese, with English and Chinese summaries). MR**1437477****5.**Q. Lin, N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers, 1996.**6.**Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements,*Proc. of Sys. Sci. & Sys. Engrg.*, Great Wall (H. K.) Culture Publish Co., 1991, pp 217-229.**7.**Peter B. Monk,*A mixed method for approximating Maxwell’s equations*, SIAM J. Numer. Anal.**28**(1991), no. 6, 1610–1634. MR**1135758**, 10.1137/0728081**8.**Peter Monk,*Analysis of a finite element method for Maxwell’s equations*, SIAM J. Numer. Anal.**29**(1992), no. 3, 714–729. MR**1163353**, 10.1137/0729045**9.**Peter Monk,*A comparison of three mixed methods for the time-dependent Maxwell’s equations*, SIAM J. Sci. Statist. Comput.**13**(1992), no. 5, 1097–1122. MR**1177800**, 10.1137/0913064**10.**Peter Monk,*An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations*, J. Comput. Appl. Math.**47**(1993), no. 1, 101–121. MR**1226366**, 10.1016/0377-0427(93)90093-Q**11.**Peter Monk,*Superconvergence of finite element approximations to Maxwell’s equations*, Numer. Methods Partial Differential Equations**10**(1994), no. 6, 793–812. MR**1298123**, 10.1002/num.1690100611**12.**J.-C. Nédélec,*Mixed finite elements in 𝑅³*, Numer. Math.**35**(1980), no. 3, 315–341. MR**592160**, 10.1007/BF01396415**13.**A. H. Schatz, I. H. Sloan, and L. B. Wahlbin,*Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point*, SIAM J. Numer. Anal.**33**(1996), no. 2, 505–521. MR**1388486**, 10.1137/0733027**14.**Lars B. Wahlbin,*Superconvergence in Galerkin finite element methods*, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR**1439050**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N30,
35L15

Retrieve articles in all journals with MSC (1991): 65N30, 35L15

Additional Information

**Qun Lin**

Affiliation:
Institute of Systems Science, Academia Sinica, Beijing, China

Email:
glin@bamboo.iss.ac.cn

**Ningning Yan**

Affiliation:
Institute of Systems Science, Academia Sinica, Beijing, China

Email:
yan@bamboo.iss.ac.cn

DOI:
https://doi.org/10.1090/S0025-5718-99-01131-X

Keywords:
Maxwell's equations,
superconvergence,
finite element

Received by editor(s):
September 22, 1997

Received by editor(s) in revised form:
March 3, 1998

Published electronically:
March 10, 1999

Article copyright:
© Copyright 1999
American Mathematical Society