Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Salem numbers of negative trace


Author: C. J. Smyth
Journal: Math. Comp. 69 (2000), 827-838
MSC (1991): Primary 11R06
DOI: https://doi.org/10.1090/S0025-5718-99-01099-6
Published electronically: March 10, 1999
MathSciNet review: 1648407
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, for all $d\geq 4$, there are Salem numbers of degree $2d$ and trace $-1$, and that the number of such Salem numbers is $\gg d/\left( \log \log d\right) ^{2}$. As a consequence, it follows that the number of totally positive algebraic integers of degree $d$ and trace $2d-1$ is also $\gg d/\left( \log \log d\right) ^{2}$.


References [Enhancements On Off] (What's this?)

  • [BDGPS] M.J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. MR 93k:11095
  • [B] D.W. Boyd, Small Salem numbers, Duke Math. J. 44, (1977), 315-327. MR 56:11952
  • [HR] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press, London, 1974. MR 54:12689
  • [MRS] J.F. McKee, P. Rowlinson and C.J. Smyth, Salem numbers and Pisot numbers from stars, in: Number Theory in Progress: Proceedings of the International Conference on Number Theory in Honor of Andrzej Schinzel, held in Zakopane, Poland, June 30-July 9, 1997 (K. Györy, Editor), de Gruyter, Berlin, 1999, Vol. 1, 309-319.
  • [MSC] D.S. Mitrinovi\'{c}, J. Sándor and B. Crstici, Handbook of Number Theory, Kluwer, Dordrecht, 1996. MR 97f:11001
  • [Robin] G. Robin, Estimation de la fonction de Tchebychef $\theta $ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega\left( n\right) $ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), 367-389. MR 85j:11109
  • [Robins] R.M. Robinson, Intervals containing infinitely many conjugate sets of algebraic integers, Studies in Mathematical Analysis and Related Topics, Stanford University Press, 1962, 305-315. MR 26:2433
  • [RS] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. Math 6, (1962), 64-94. MR 25:1139
  • [Sa] R. Salem, Power series with integer coefficients, Duke Math J., 12 (1945), 153-172. MR 6:206b
  • [Sm1] C.J. Smyth, Totally positive algebraic integers of small trace, Annales de l'Institute Fourier de l'Univ. de Grenoble, 34 (1984), 1-28. MR 86f:11091
  • [Sm2] C.J. Smyth, Cyclotomic factors of reciprocal polynomials and totally positive algebraic integers of small trace, University of Edinburgh preprint, MS96-024, 1996.
  • [Sm3] C.J. Smyth, A Euclidean algorithm for finding the intersection points of plane curves (in preparation).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 11R06

Retrieve articles in all journals with MSC (1991): 11R06


Additional Information

C. J. Smyth
Affiliation: Department of Mathematics and Statistics, James Clerk Maxwell Building, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, Scotland, UK.
Email: chris@maths.ed.ac.uk

DOI: https://doi.org/10.1090/S0025-5718-99-01099-6
Received by editor(s): April 28, 1998
Published electronically: March 10, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society