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THE THIRD LARGEST PRIME DIVISOR
OF AN ODD PERFECT NUMBER

EXCEEDS ONE HUNDRED

DOUGLAS E. IANNUCCI

Abstract. Let σ(n) denote the sum of positive divisors of the natural number
n. Such a number is said to be perfect if σ(n) = 2n. It is well known that a
number is even and perfect if and only if it has the form 2p−1(2p − 1) where
2p − 1 is prime.

It is unknown whether or not odd perfect numbers exist, although many
conditions necessary for their existence have been found. For example, Cohen
and Hagis have shown that the largest prime divisor of an odd perfect number
must exceed 106, and Iannucci showed that the second largest must exceed
104. In this paper, we prove that the third largest prime divisor of an odd
perfect number must exceed 100.

1. Introduction

For the natural n, we denote the sum of its positive divisors by

σ(n) =
∑
d|n

d.

We define n to be perfect if σ(n) = 2n.
An even number is perfect if and only if it has the form 2p−1(2p − 1), where

2p − 1 is prime.
Whether or not any odd perfect numbers exist is still unknown. Many condi-

tions necessary for their existence have been found. We refer the reader to the
introduction section of [5], where the author, in a brief history, mentions some of
these results.

Let us consider the possible class of theorems for the existence of odd perfect
numbers, given by

P(K,M). An odd perfect number is divisible by K distinct primes, each of which
exceed M .

The best result to date for the case K = 1 was obtained by Cohen and Hagis
[2]; namely, P(1, 106). For K = 2, we have the result of the author [5], P(2, 104).
We combine these results and state
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Lemma 1. The largest prime divisor P of an odd perfect exceeds 106. The second
largest prime divisor S of an odd perfect number exceeds 104.

The purpose of this paper is to obtain a theorem of the form P(3,M). In
particular, we shall prove P(3, 102), and we state this result as

Theorem 1. If T is the third largest prime divisor of an odd perfect number, then
T > 102.

For an integer k ≥ 3, we say that a natural number n is multiply perfect with
index k (or, simply, k-perfect) if σ(n) = kn. Hagis [4] showed for all k ≥ 3 that
the third largest prime divisor of an odd k-perfect number exceeds 102. Theorem 1
is the analogous statement of this result for the case when k = 2. While there are
some similarities between Hagis’s proof and that of Theorem 1, the latter proof is
rendered far more complicated by the smaller index of k = 2.

Computation plays a huge role in the proof of Theorem 1. All computations and
computer searches for this paper were conducted on an IBM-486 personal computer
using a UBASIC software package. Verification of all primes was carried out using
the APR primality test, due to Adleman, Pomerance and Rumely [1].

2. Some preliminaries

Throughout this paper, nonnegative integers are denoted by a, b, c, d, α, β, γ, as
well as by h, i, j, k, l,m, n, and H, I, J,K,L,M,N . Primes, which are odd unless
noted otherwise, are denoted by π, p, q, r, s, t, u, v, and P,Q,R, S, T .

We say pk‖m if pk|m but pk+1 - m, and we say vp(m) = k if pk‖m. If p - a, we
denote by op(a) the exponent to which a belongs, modulo p.

Recalling Φm(a) (i.e., the cyclotomic polynomial of order m evaluated at a), we
have

bn − 1 =
∏
d|n

Φd(b)(1)

and

σ(pa) =
∏
d|a+1
d>1

Φd(p).(2)

If N is an odd perfect number with unique prime factorization given by
∏k
i=1 p

ai
i ,

we have

2N =
k∏
i=1

∏
d|ai+1
d>1

Φd(pi).(3)

We conclude this section by giving several results which will be applied frequently
throughout this paper. We refer the reader to the preliminaries section of [5], where
we gave these same results along with their references (or with brief proofs).

Lemma 2. For primes p and q, q|Φm(p) if and only if m = hqγ, where h = oq(p)
and γ ≥ 0. If γ > 0, then q‖Φm(p).
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An immediate consequence of (2) and Lemma 2 is

vq(σ(pa)) =


vq(Φh(p)) + vq(a+ 1), if h|a+ 1, h > 1,
vq(a+ 1), if h = 1,
0, otherwise.

(4)

Lemma 3. If q|Φa(p) and r|Φb(p), where a 6= b, q ≡ 1 (mod a), and r ≡ 1 (mod b),
then q 6= r.

Lemma 4. If m ≥ 3, then Φm(p) has a prime divisor q with the property q ≡ 1
(modm).

Lemma 5. An odd perfect number must have unique prime factorization given by

π4m+1p2a1
1 p2a2

2 · · · p2ak
k ,

where π ≡ 1 (mod 4).

We will refer to π as the special prime. Recalling the function σ−1(n) = σ(n)/n,
we see that n is perfect if and only if σ−1(n) = 2. The function σ−1 is multiplicative,
and

σ−1(pa) < σ−1(pb) <
p

p− 1
if a < b,(5)

σ−1(qb) < σ−1(pa), for all a > 0 and b ≥ 0, if p < q.(6)

3. Acceptable and admissible positive integers

The proof of Theorem 1 will be given in Sections 4, 5 and 6. In order to make the
proof more tractable, it is necessary to provide two definitions. First, we consider
the set of primes given by

X = {3, 5, 7, 11, 13, 19, 31, 61, 97}.
Next, we give

Definition 1. For p ∈ X and q < 100, let h = op(q). We say that the positive
integer k is (p, q)-acceptable if each of the following is true:

1. k + 1 = hpγ , where γ ≥ 0.
2. 4 - h, and 2 - h if q ≡ 3 (mod 4).
3. σ(qk) has no prime factor between 102 and 104.
4. σ(qk) has at most one prime factor between 104 and 106.
5. σ(qk) has at most two prime factors greater than 104.

Let β be the smallest positive integer such that hpβ ≥ 50. It follows by Lemmata
4 and 3, equation (2), and conditions 3, 4, and 5 of Definition 1 that k is not (p, q)-
acceptable if k + 1 = hpγ and γ ≥ β + 2. Thus the set of (p, q)-acceptable integers
is finite.

Table 1. The values Ap, Bp, Cp and λ(p) for p ∈ X

p Ap Bp Cp λ(p) p Ap Bp Cp λ(p) p Ap Bp Cp λ(p)
3 6 3 2 11 11 3 0 2 5 31 2 1 1 4
5 0 1 1 2 13 3 0 1 4 61 2 0 0 2
7 7 1 2 10 19 2 1 2 5 97 1 0 0 1
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A computer search was conducted and a list of all (p, q)-acceptable values was
compiled. Then, for each fixed p ∈ X , four integers, each depending on p, were
determined as follows:

1. Ap denotes the sum
∑
vp(σ(qk)), taken over all k and q such that k is even

and (p, q)-acceptable, and such that r < 100 if r|σ(qk).
2. Bp denotes the maximum value of vp(σ(qk)), taken over all k and q such that
k is odd and (p, q)-acceptable.

3. Cp denotes the maximum value of all sums of the form
∑
vp(σ(qk)), where

each sum is taken over k and q such that k is even and (p, q)-acceptable,
and such that σ(qk) is divisible by a prime exceeding 104, but neither three
distinct primes exceeding 104 nor two distinct primes between 104 and 106

appear among the prime divisors of all values σ(qk) involved in the sum.
4. λ(p) denotes the sum Ap +Bp + Cp.
The values Ap, Bp, Cp and λ(p) for all p ∈ X are given in Table 1.

Definition 2. If p < 100 or if p > 104, we say that the positive integer d is
p-admissible if each of the following is true:

1. d is odd unless p ≡ 1 (mod 4), in which case 4 - d.
2. Φd(p) has no prime factor between 102 and 104.
3. Φd(p) has at most one prime factor between 104 and 106.
4. Φd(p) has at most two prime factors greater than 104.
5. If 104 < p < 106, then Φd(p) has no prime factors between 104 and 106, and

at most one prime factor greater than 106.
6. If p > 106, then Φd(p) has at most one prime factor greater than 104.

4. Restrictions on vp(N) for p ∈ X

We may now begin the proof of Theorem 1, which is given by reductio ad absur-
dum. Without further explicit mention, we will assume that N is an odd perfect
number, all of whose distinct prime divisors, save two, are less than 100. Let P
and S denote the largest and second largest prime divisors of N , respectively, and
let α = vP (N), β = vS(N). Then

N = LSβPα,(7)

where p < 100 if p|L. By Lemma 1 we have S > 104 and P > 106. Since N is
perfect, we have

2N = σ(L)σ(Sβ)σ(Pα).(8)

Under these assumptions, we can find restrictions for the values vp(N) for p ∈ X .
The remainder of this section is devoted to this end.

Suppose pa‖N and d|a + 1, d > 1. By (3), (7) and Lemma 1, it follows that
conditions 2, 3, and 4 of Definition 2 must be satisfied by d (as must conditions 5
and 6 if p > 104). Furthermore, by Lemma 5, condition 1 of Definition 2 is also
satisfied. We have proved

Lemma 6. If d is not p-admissible, then d - vp(N) + 1.

We now establish an upper bound on vp(σ(L)) for p ∈ X .

Lemma 7. For p ∈ X we have vp(σ(L)) ≤ λ(p), with λ(p) given in Table 1.
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Proof. Suppose qa‖L and p|σ(qa). Let h = op(q). Then h|a+ 1 by (4), so we may
write a + 1 = bhpγ , where p - b and γ ≥ 0. Thus by (4) we have vp(σ(qa)) =
vp(σ(qk)), where k+ 1 = hpγ . Since k+ 1|a+ 1, k satisfies condition 2 of Definition
1 by Lemma 5. Conditions 3, 4, and 5 are also satisfied by k, since σ(qk)|σ(qa) and
σ(qa)|2N . Hence k is (p, q)-acceptable.

Thus, if L has unique prime factorization
∏c
i=1 q

ai
i , and if p|σ(qaii ), there exists

a (p, qi)-acceptable value ki such that vp(σ(qaii )) = vp(σ(qkii )). We may write

vp(σ(L)) =
c∑
i=1

vp(σ(qaii )) =
∑

vp(σ(qkii )),

where the right-most sum is taken over all qi such that p|σ(qaii )). At most one of
the ki can be odd, by Lemma 5. Also, if one lists the prime divisors of all the values
σ(qki) in the sum, there can appear no more than two distinct primes exceeding
104, nor more than one prime between 104 and 106. Recalling how Ap, Bp, Cp and
λ(p) are defined in Section 3, the result follows.

We now state and prove

Lemma 8. Suppose for p ∈ X and d > λ(p)+1, that uv|Φd(p), where 104 < u < v.
Consider the following three statements:

1. 4|op(Q), or 2|op(Q) and Q ≡ 3 (mod 4).
2. Either r is not Q-admissible for some r|op(Q), or Q ≡ 1 (mod p) and p is not
Q-admissible.

3. There exists t > 104, t 6= u, t 6= v, such that either t|Φr(Q) for some r|op(Q),
or t|Φp(Q) and Q ≡ 1 (mod p).

If, for both cases Q = u and Q = v, any of these three statements is true, then
d - vp(N) + 1.

Proof. Suppose, for some p ∈ X , that d|vp(N) + 1, d > λ(p) + 1, and uv|Φd(p),
where 104 < u < v. Then u = S and v = P , by (3) and (7). Thus, by Lemma 7 and
equation (8), p divides either σ(Sβ) or σ(Pα). Suppose p|σ(Sβ). Then statement
1, as above with Q = S, is false by (4) and Lemma 5. Statements 2 and 3, with
Q = S, are false by (4), (3), Definition 2, and (7). Similarly, if p|σ(Pα), then
statements 1, 2, and 3 are false when Q = P .

We now wish to show that d - vp(N)+1 for certain cases where Φd(p) is divisible
by exactly one prime exceeding 104. Consider the set of 24 ordered pairs given by

Y = {(3, 13), (3, 23), (5, 7), (5, 11), (5, 13), (5, 47), (7, 13), (11, 7),

(11, 9), (11, 17), (11, 19), (13, 5), (13, 7), (13, 9), (19, 19), (31, 5),

(31, 7), (31, 17), (61, 7)(61, 9), (61, 23), (97, 5), (97, 11), (97, 17)}.
Computation shows that each ordered pair is of the form (p, d) for some p ∈ X such
that Φd(p) = JQ, where J |L and Q > 104 (recall L from (7)). Computation also
shows that four important properties are shared by all (p, d) ∈ Y :

1. Property A: For r < 100, r 6= p, one of the following hold:
(a) 4|oQ(r) or 2|oQ(r) and r ≡ 3 (mod 4),
(b) qt|oQ(r), qt < oQ(r), t = 31, 37, or t ≥ 43,
(c) t is not r-admissible for some t|oQ(r).

2. Property B: Either 2 is not Q-admissible or (p, d) is either (13, 9) or (31, 17).
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3. Property C: Either 3 is not Q-admissible or (p, d) is one of (3, 23), (5, 7),
(13, 9), (31, 17) or (97, 11).

Before stating Property D, we need the following result, which appears as Lemma
2 in [3]:

Lemma 9. Suppose Φr(p) = Kqb, where b ≥ 1 and q 6= K. Let h = op(q) and H =
op(K). Define c to be the least nonnegative solution to the congruence Kh−1 ≡ px
(mod p2). Then p‖Φh(q) if H 6= c.

A special case of Lemma 9 appears as Lemma 3 in [7]:

Lemma 10. If Φr(p) = qb for some b ≥ 1, and h = op(q), then p‖Φh(q).

Then we have
4. Property D: For all r such that 5 ≤ r < 100, one of the following is true:

(a) 2 or 3 divides or(Q).
(b) There exists t which is not Q-admissible and is such that either t|or(Q)

or Q ≡ 1 (mod r) and r is not Q-admissible.
(c) There exists t|or(Q) such that Φt(Q) = KM (or Q ≡ 1 (mod r) and

Φr(Q) = KM), where q < 100 if q|K, M > 1, q > 104 if q|M , and
writing H = oQ(K), we have H 6= c if KH − 1 ≡ cQ (modQ2).

We are now ready to state and prove

Lemma 11. If (p, d) ∈ Y , then d - vp(N) + 1.

Proof. We use reductio ad absurdum. For, suppose d|vp(N) + 1 for some (p, d) ∈ Y .
By our previous remarks, Φd(p) = JQ, where J |L and Q > 104; furthermore, (p, d)
has Properties A, B, C and D. Thus Q|N by (3); either Q = S or Q = P (in fact
Q = S if Q < 106).

We first consider Property A. Let r < 100, r 6= p, and suppose rb‖N . If 4|or(Q)
or if 2|or(Q) and r ≡ 3 (mod 4), then Q - σ(rb) by (4) and Lemma 5. If qt|oQ(r),
qt < oQ(r), and t = 31, 37, or t ≥ 43, then by (4), (3), and Lemmata (3) and (4),
the assumption that Q|σ(rb) implies N is divisible by two distinct primes, each
exceeding 100, and, by Lemma 2, different from Q; this is impossible. Finally, if
t is not r-admissible for some t|oQ(r), then Q - σ(rb) by (4) and Lemma 6. We
conclude from Property A that Q - σ(rb) if rb‖N . Furthermore, Q - vp(N) + 1 by
(3) and Lemmata 3 and 4. Thus by (4) we have Q‖σ(L).

We next consider Property B. If 2 is not Q-admissible, then Q 6= π by Lemmata
6 and 5. If we have (p, d) = (13, 9), then Q = 16 09669. Since 1 60967|Φ2(Q),
then Q = π would imply P = Q and S = 1 60967, and hence S ≡ 1 (mod 13)
while o13(P ) = 3. Thus by Lemma 7 and 8 we have 134|σ(Sβ)σ(pα). However,
if 132|σ(Sβ), then by (4), (3), and Lemmata 3 and 4, we have QPr|2N for some
r ≡ 1 (mod 132), which is impossible. Thus 133|σ(Pα). As P 3−1 ≡ 143 (mod 132),
we have 13‖Φ3(P ) by (1), and thus it follows similarly that 133 - σ(Pα). Finally,
if we have (p, d) = (31, 17), then, as above, if Q = π, then P ≡ 1 (mod 31) and
o31(S) = 5. By Lemma 7 and (8), either 316|σ(Pα) or 316|σ(Sβ). Again, it is
impossible to have 316|σ(Pα); thus 316|σ(Sβ). But S5 − 1 ≡ 930 (mod 312); hence
by (1) 31‖Φ5(S). Thus by (4) 314|β + 1; again, this is impossible. We conclude
from Property B that Q 6= π, and hence vQ(N) > 1.

We now consider Property C. By Lemma 6, 3 - vQ(N)+1 if 3 is not Q-admissible.
Otherwise, suppose d|vp(N) + 1, where (p, d) is (3, 23), (5, 7), (13, 9), (31, 17) or
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(97, 11). As previously noted, Φd(p) = JQ, where J |L and Q > 104. Computation
then shows that Φ3(Q) = IR, where I|L and R > Q. Hence if 3|vQ(N) + 1,
then P = R and S = Q. In the case where (p, d) = (3, 23), we have 36|σ(Sβ)
or 36|σ(Pα) by Lemma 7 and (8). As o3(S) = 2 and S 6= π, we have 3 - σ(Sβ)
by (4) and Lemma 5. But P ≡ 1 (mod 3), and hence 36 - σ(Pα) by (4), (3) and
Lemmata 3 and 4. In the case where (p, d) = (5, 7), we have 5|σ(Sβ)σ(Pα) by
Lemma 7 and (8). But S ≡ P ≡ 1 (mod 5), where 5 is neither S-admissible nor
P -admissible. Similarly, if (p, d) = (13, 9), then 13|σ(Sβ)σ(Pα), but o13(P ) = 4
(where 4 is not P -admissible), and o13(S) = 6 (by (4) and (3), 13|σ(Sβ) would
imply Φ2(S)Φ3(S)Φ6(S)|2N , clearly a contradiction as the product involves three
primes exceeding 104). If (p, d) = (31, 17), then 316|σ(Sβ) or 316|σ(Pα). But
o31(P ) = 30, where 2 is not P -admissible, and S ≡ 1 (mod 31), implying by (4), (3)
and Lemmata 3 and 4 that 316 - σ(Sβ). Finally, in the case where (p, d) = (97, 11),
we have 97|σ(Sβ)σ(Pα) but o97(S) = 16 and o97(P ) = 32. Thus we may conclude
from Property C that 3 - vQ(N) + 1. Since also 2 - vQ(N) + 1, it follows from (8)
that Q2|σ(Pα) if Q = S, or Q2|σ(Sβ) if Q = P .

Finally, we consider Property D. Write γ = vQ(N) and let r < 100. If 2 or
3 divides or(Q), then r - σ(Qγ) by (4) and Properties B and C. Otherwise, we
have two possibilities. The first is that t is not Q-admissible for some t|or(Q) (or
Q ≡ 1 (mod r) and r is not Q-admissible). In this case, r - σ(Qγ) by (4) and
Lemma 6. The second possibility is that either Φt(Q) = KM for some t|or(Q), or
Q ≡ 1 (mod r) and Φr(Q) = KM , where K|L and q > 104 if q|M ; furthermore, if
H = oQ(K), we have H 6= c if KH−1 ≡ cQ (modQ2). Now, if t is not Q-admissible
(or if r is not Q-admissible in the case when Q ≡ 1 (mod r)), then, as above, we
have r - σ(Qγ). Otherwise, Φt(Q) = KRb for some t|or(Q) (or, in the case when
Q ≡ 1 (mod r), Φr(Q) = KRb), where b ≥ 1 and R > 104. Suppose, then, that
r|σ(Qγ). By (4) and (3), we have S = Q and P = R if Q < R, or we have S = R
and P = Q if Q > R. Without loss of generality we may assume S = Q and P = R.
Let h = oS(P ). Then Lemma 9 implies S‖Φh(P ). Then S - vP (N) + 1 if S|σ(Pα)
by (4), (3), and Lemmata 3 and 4. Thus vS(σ(Pα)) ≤ 1 by (4); this contradicts
the conclusion at the end of the preceeding paragraph of this proof; namely, that
S2|σ(Pα). We conclude that r - σ(Qγ) for all r < 100 if γ = vQ(N).

Without loss of generality, let S = Q. Then, as r - σ(Sβ) for all r|L, we have
σ(Sβ) = P b for some b ≥ 1. By Lemma 10 we have S‖Φh(P ) if h = oS(P ).
The same argument as in the preceeding paragraph tells us that S - α + 1 and
vS(σ(Pα)) ≤ 1, which contradicts the fact, previously deduced from our hypothesis,
that S2|σ(Pα). This contradiction completes the proof of Lemma 11.

In order to complete this section, we need one more auxiliary result; namely,

Lemma 12. If 5|N and 5 = π, then 5‖N . Thus if v5(N) is odd, then v5(N) = 1.

Proof. Again, we use reductio ad absurdum. For, suppose 5 = π and that a > 1,
a = v5(N). If a = 5, then by (3) we have 5 · Φ2(5)Φ3(5)Φ6(5)|2N ; this contradicts
the well-known fact that no odd perfect number can be divisible by 3 · 5 · 7. As 10
is not 5-admissible, we have a 6= 9 by Lemma 6. Thus a ≥ 13. By Lemma 7 and
(8) we have either 56|σ(Sβ) or 56|σ(Pα). If 56|σ(Sβ), then β + 1 is odd, as S 6= π.
Hence by (4) o5(S) is odd; therefore S ≡ 1 (mod 5) and so 56|β + 1. But this is
impossible by (3) and Lemmata (3) and (4), and the same argument precludes the
possibility that 56|σ(Pα).
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The reader may now note that Lemma 6 gives us by computation the following
67 ordered pairs (p, d) for which p ∈ X and d - vp(N) + 1: (3, 7), (3, 9), (3, 11),
(3, 15), (3, 17), (3, 19), (3, 25), (3, 31), (3, 43), (3, 47), (3, 53), (3, 67), (5, 9), (5, 10),
(5, 15), (5, 17), (5, 19), (5, 23), (5, 25), (5, 31), (5, 37), (7, 5), (7, 7), (7, 9), (7, 11),
(7, 19), (7, 23), (7, 31), (7, 37), (11, 5), (11, 13), (11, 23), (11, 29), (11, 31), (11, 41),
(13, 6), (13, 11), (13, 17), (13, 23), (13, 29), (19, 3), (19, 5), (19, 7), (19, 13), (19, 23),
(19, 29), (19, 41), (31, 3), (31, 11), (31, 13), (31, 19), (31, 23), (31, 29), (61, 5), (61, 6),
(61, 11), (61, 17), (61, 19), (61, 29), (61, 41), (97, 3), (97, 6), (97, 7), (97, 19), (97, 23),
(97, 29), (97, 41).

Similarly, Lemma 8 gives the following 20 ordered pairs (p, d) where p ∈ X
and d - vp(N) + 1: (3, 29), (3, 37) (3, 41), (3, 59), (3, 61), (5, 29), (5, 41), (5, 43),
(7, 17), (7, 29), (7, 41), (11, 11), (13, 13), (13, 19), (13, 41), (19, 11), (19, 17), (31, 41),
(61, 13), (97, 13).

Combining these remarks with the statements of Lemmata 11 and 12, we sum-
marize the results of this section by stating

Lemma 13. If p ∈ X and p|N , let the notation (p : j1, . . . , jk, [l]) mean that
vp(N) = j1, . . . , jk or vp(N) ≥ l. Then we have (3 : 2, 4, [70]), (5 : 1, 2, 4, [52]),
(7 : 2, [42]), (11 : 2, [36]), (13 : 1, 2, [30]), (19 : [30]), (31 : [30]), (61 : 1, 2, [30]), and
(97 : 1, [30]).

Furthermore, if p ∈ X, pa‖N , and a > 4, then there exists r|a + 1 such that
q > 100 if q ≡ 1 (mod r).

5. Improved lower bounds on S and P

By applying Lemma 13, we can dramatically increase the lower bounds given in
Lemma 1 for S and P . Indeed, in this section we show that P > S > 232.

Montgomery [6] gives all solutions to aq−1 ≡ 1 (mod q2) with 2 ≤ a ≤ 99 and
q < 232. As a direct consequence of Montgomery’s result, and by computation, we
have

Lemma 14. If p ∈ X, 104 < q < 232, and pq−1 ≡ 1 (mod q2), then oq(p) is
composite.

For each p ∈ X , we may define cp and dp as follows:

p : 3 5 7 11 13 19 31 61 97
cp : 70 52 42 36 30 30 30 30 30
dp : 21 14 12 10 9 9 7 6 5

We next state the following result, which is verified by computation.

Lemma 15. For all p ∈ X, consider the congruences

xp−1 ≡ 1 (mod pdp) and xp−1 ≡ (1 + p+ · · ·+ pdp−1)p−1 (mod pdp).

For any prime solution q to either of these two congruences for any p ∈ X, we have
q > 232.

Now we may state and prove

Lemma 16. If p ∈ X and vp(N) > 4, then P > S > 232.

Proof. Suppose p ∈ X and vp(N) > 4. Then pcp |N by Lemma 13. Thus by Lemma
7 and (8) either vp(σ(Sβ)) or vp(σ(Pα)) is no less than the least integer which is
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greater than or equal to (cp − λ(p))/2. If p|σ(Sβ), then p4 - β + 1 by (3) and
Lemmata 3 and 4. Similarly, p4 - α+ 1 if p|σ(Pα). As

dp ≤ d(cp − λ(p))/2e − 3,

it follows from (4) that either pdp |Φh(S) or pdp |Φh′(P ), where h = op(S) and
h′ = op(P ) (recall the ceiling function, dxe = the least integer not less than x).

If pdp |Φh(S), then Sh ≡ 1 (mod pdp) by (1). Since h|p − 1, we have Sp−1 ≡ 1
(mod pdp), and so S > 232 by Lemma 15; a fortiori P > S > 232.

Otherwise, pdp |Φh′(P ); again, this implies P p−1 ≡ (mod pdp). By Lemma 13,
there exists r|vp(N) + 1 such that q > 100 if q ≡ 1 (mod r). Thus p 6≡ 1 (mod r).
Thus by Lemma 2, for all q|Φr(p), we have r = oq(p), implying q ≡ 1 (mod r), or
q > 100. Thus by (3) and (7) we have

Φr(p) = 1 + p+ · · ·+ pr−1 = SbP a,

where 0 ≤ a ≤ α, 0 ≤ b ≤ β. Then b > 0, as otherwise, by Lemma 10, p‖Φh′(P ),
which is false.

Suppose b > 1. Then r = oS(p) by Lemma 2. Hence, as S2|Φr(p), we have
pS−1 ≡ 1 (modS2). Thus S > 232 by Lemma 14, for oS(p) is prime.

Otherwise, b = 1. We may assume a > 0, as otherwise S = Φr(p) > pr−1 ≥
330 > 232 (recall that r ≥ 31 by Lemma 13). Then

1 + p+ · · ·+ pr−1 = SP a.

Since P p−1 ≡ 1 (mod pdp) and dp < r (recall that r ≥ 31, above), this gives us

Sp−1 ≡ (1 + p+ · · ·+ pdp−1)p−1 (mod pdp),

implying S > 232 by Lemma 15.

We are now ready to prove

Lemma 17. P > S > 232.

Proof. Either 7, 3 or 5 divides N , for otherwise, by (5) and (6), we have

σ−1(N) ≤ 10007
10006

· 1000003
1000002

·
∏

11≤p≤97

p

p− 1
< 2.

Suppose 7|N . By Lemma 13, either v7(N) > 4, in which case S > 232 by Lemma
16, or 72‖N . In the latter case, as 19|Φ3(7), we have 19|N by (3), whence S > 232

by Lemmata 13 and 16.
Suppose 3|N . If v3(N) > 4, then S > 232 by Lemma 16. Otherwise v3(N) = 2

or 4.
If 32‖N , then 13‖N as 13|Φ3(3). Again, S > 232 if v13(N) > 4; otherwise

v13(N) = 1 or 2. If 13‖N , then 7|N (as 7|Φ2(13)); hence, as we have seen, S > 232.
If 132‖N , then 61|N . Again, if v61(N) > 4, then S > 232; otherwise v61(N) = 1
or 2. The former case gives us 31|N (as 31|Φ2(61)), whence S > 232 by Lemmata
13 and 16. If 612‖N , then 97|N (as 97|Φ3(61)); again, this implies S > 232, as
v97(N) > 4 or 97‖N , where 7|Φ2(97).

If 34‖N , then 11|N , as 11|Φ5(3). If v11(N) > 4, then S > 232; otherwise 112‖N .
As 7|Φ3(11), this implies 7|N , and hence S > 232.

Suppose 5|N . If 5‖N , then 3|N , and so S > 232. If v5(N) > 4, then S > 232 by
Lemma 16. If 52‖N , then 31|N (as 31 = Φ3(5)), but v31(N) > 4 and so S > 232.
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Otherwise 54‖N ; thus 11|N (as 11|Φ5(5)). As above, either v11(N) > 4 or 112‖N ;
as we have already seen, either case implies S > 232.

We may now restrict vp(N) for all p < 100 (besides the elements of X). Thanks
to the new bound on S and P , we have the following immediate result:

Lemma 18. For the given primes p, along the given values d, we have d - vp(N)+1.

p d
17 3, 4, 5, 7
23 2, 5, 7
29 5, 7
37 4, 5, 7
41 3, 4, 5, 7

p d
43 2, 3, 5, 7
47 2, 5, 7
53 3, 4, 5, 7
59 2, 3, 5
67 2, 5

p d
71 2, 3, 5
73 3, 4, 5
79 2, 5
83 2, 3, 5
89 3, 5

Lemma 18 follows as a corollary to Lemma 17, since computation shows that
either d is not p-admissible or Φd(p) is divisible by a prime q such that 104 < q < 232.
Since S > 232, it follows that d - vp(N) + 1.

We conclude this section with a few more auxiliary results. The proof of Theorem
1 will be completed in Section 6.

Lemma 19. 6 - v37(N) + 1.

Proof. Suppose otherwise. Then by (3) we have

37 · Φ2(37)Φ3(37)Φ6(37)|2N,
or, equivalently

3 · 7 · 19 · 31 · 37 · 43 · 67|N.
If 34|N we have, by (5),

σ−1(N) ≥ σ−1(34 · 72 · 19 · 31 · 37 · 43 · 67) > 2,

a contradiction (recall that 72|N , since 7 6= π). Otherwise 32‖N , and hence Φ3(3) =
13|N , giving

σ−1(N) ≥ σ−1(32 · 72 · 13 · 19 · 31 · 37 · 43 · 67) > 2.

Lemma 20. If v3(N) > 4 or v5(N) > 4, then S or P is the special prime.

Proof. If v3(N) > 4, then v3(N) ≥ 70 by Lemma 13. Thus, by Lemma 7 and (8),
330|σ(Sβ) or 330|σ(Pα). If 330|σ(Sβ), then 35 - β+ 1 by (3) and Lemmata 3 and 4.
Thus, by (4), 326|Φh(S) (where h denotes o3(S)), and h > 1. This implies h = 2
and therefore, by Lemma 5, S = π. Similarly, P = π if 330|σ(Pα). The exact same
argument shows that if v5(N) > 4, then S or P is the special prime.

Lemma 21. Neither 29 nor 89 is the special prime.

Proof. Suppose 29 = π. As 3 · 5|Φ2(29), we have 3 · 5|N . Then v3(N) = 2 or 4 by
Lemma 20; similarly v5(N) = 2 or 4.

If 34‖N , then Φ5(3) = 112|N ; thus by (5), σ1(N) ≥ σ−1(34 · 52 · 112) > 2.
Similarly, Φ5(5) = 11 · 71; hence if 54‖N , then σ−1(N) ≥ σ−1(32 · 54 · 222 · 71) > 2.

Thus v3(N) = v5(N) = 2. As Φ3(3) = 13 and Φ3(5) = 31, we have σ−1(N) ≥
σ−1(32 · 52 · 132 · 312) > 2. This contradiction shows that 29 6= π. The exact same
argument shows that 89 6= π.
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6. A computer search

We are now ready to complete the proof of Theorem 1. We begin by summarizing
the results of Lemmata 13, 18, 19 and 21 as follows:

Lemma 22. If p < 100 and p|N , let the notation (p : j1, j2, . . . , jk, [l]) mean that
vp(N) = j1, . . . , jk or vp(N) ≥ l. Then we have (3 : 2, 4, [70]), (5 : 1, 2, 4[52]),
(7 : 2, [42]), (11 : 2, [36]), (13 : 1, 2, [30]), (17 : 1, [10]), (19 : [30]), (23 : 2, [8]),
(29 : 2, [8]), (31 : [30]), (37 : 1, 2, [8]), (41 : 1, [10]), (43 : [10]), (47 : 2, [8]),
(53 : 1, [10]), (59 : [6]), (61 : 1, 2, [30]), (67 : 2, [6]), (71 : [6]), (73 : 1, [6]),
(79 : 2, [6]), (83 : [6]), (89 : [6]), and (97 : 1, [30]). Furthermore, if pa‖N and
a > 4, then pa > 235.

For each p < 100, let ap = vp(N) and let

L(p) =

{
log σ−1(pap), if 0 ≤ ap ≤ 4,
log(p/(p− 1)), if ap > 4.

Thus, as a consequence of (5),

log σ−1(pap) ≤ L(p).(9)

We now state

Lemma 23. N must satisfy the inequality∣∣∣∣∣ ∑
p<100

L(p)− log 2

∣∣∣∣∣ < 2−31.

Proof. From (8) we have log σ−1(L) + log σ−1(Sβ) + log σ−1(Pα) = log 2; that is∑
p<100

log σ−1(pap) = log 2− log σ−1(Sβ)− log σ−1(Pα).(10)

Since by Lemma 17 P > S > 232, we have by (5) and (6)

σ−1(Pα) < σ−1(Sβ) <
232 + 1

232
= 1 + 2−32.(11)

Applying the inequality log(1 + x) < x for x > 0 to (11) gives log σ−1(Sβ) +
log σ−1(Pα) < 2−31, and hence, from (10),

log 2− 2−31 <
∑
p<100

log σ−1(pap).

Thus the left-hand inequality of the statement of the lemma follows from (9).
To prove the right-hand inequality, note that as a consequence of (10)∑

p<100

log σ−1(pap) < log 2.(12)
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Let R(p) = L(p)− logσ−1(pap). Then R(p) = 0 if ap ≤ 4. Otherwise by Lemma 22
pap < 235, in which case

R(p) = log
p

p− 1
− log

pap+1 − 1
pap(p− 1)

= log
(

1 +
1

pap+1 − 1

)
<

1
pap+1 − 1

<
1

236
,

so that R(p) < 1/(236). Hence∑
p<100

R(p) <
24
236

< 2−31.(13)

Thus, by (12) and (13),∑
p<100

L(p) =
∑
p<100

log σ−1(pap) +
∑
p<100

R(p)

< log 2 + 2−31,

and so the lemma is proved.

At this stage, it was desired to conduct a computer search for all odd positive
integers which satisfy Lemmata 22 and 23. To make the search more manageable,
more restrictions were sought. For example, it is well known that if N is an odd
perfect number then 3·5·7 - N . In fact, our hypotheses on N , along with elementary
arguments, enable us to deduce the following additional restrictions: 3 · 5 · 11 - N ,
if 5‖N , then 32‖N ; if 34‖N , then 5 - N ; if 32‖N , then v5(N) /∈ {2, 4}; and if 72‖N ,
then 32‖N or v3(N) > 4.

These additional restrictions were incorporated in the computer search, making
it more feasible. It was conducted on an IBM-486PC, using a UBASIC software
package, as were all computations for this paper. The search was conducted for all
odd positive integers with no prime divisors exceeding 100, which satisfy Lemmata
22 and 23, along with the additional restrictions discussed above. No such integers
were found.

We conclude that Theorem 1 holds for all odd perfect numbers.

7. Some concluding remarks

Thanks to Lemma 1 and Theorem 1, we now have P(K, 108−2K) for K = 1,
2, and 3 (and vacuously for K = 4). These lower bounds obtained for the first,
second, and third largest prime divisors of an odd perfect number could be extended
by applying the same techniques in the papers in which these results appeared,
provided one has sufficient computer capability, energy, and patience.

I would like to express my thanks to Peter Hagis Jr., who took the time to
proofread an earlier draft of this paper. My gratitude extends as well to the referee,
whose suggestions concerning this paper (as well as [5]) were most helpful.
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