Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Tables of curves with many points


Authors: Gerard van der Geer and Marcel van der Vlugt
Journal: Math. Comp. 69 (2000), 797-810
MSC (1991): Primary 11G20, 14G15; Secondary 14H05
DOI: https://doi.org/10.1090/S0025-5718-99-01143-6
Published electronically: August 18, 1999
MathSciNet review: 1654002
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: These tables record results on curves with many points over finite fields. For relatively small genus ($0\leq g \leq 50$) and $q$ a small power of $2$ or $3$ we give in two tables the best presently known bounds for $N_{q}(g)$, the maximum number of rational points on a smooth absolutely irreducible projective curve of genus $g$ over a field $\mathbb{F}_{q}$ of cardinality $q$. In additional tables we list for a given pair $(g,q)$ the type of construction of the best curve so far, and we give a reference to the literature where such a curve can be found.


References [Enhancements On Off] (What's this?)

  • [A] R. Auer: Ray class fields of global function fields with many rational places. Report University of Oldenburg, 1998.
  • [D] L.E. Dickson: Geometrical and invariantive theory of quartic curves modulo $2$. Am. J. Math. 37 (1915), 337-354
  • [Do] J. Doumen: Master's thesis. Leiden University, 1998.
  • [E] N. Elkies: Private communication, 1997.
  • [F-T] R. Fuhrmann, F. Torres: The genus of curves over finite fields with many rational points. Manuscripta Math. 89 (1996), 103-106. MR 96m:11046
  • [G-S] A. Garcia, H. Stichtenoth: A class of polynomials over finite fields. Preprint, 1998.
  • [G-S-X] A. Garcia, H. Stichtenoth, C.P. Xing: On subfields of the Hermitian function field. Preprint 1998.
  • [G-V1] G. van der Geer, M. van der Vlugt: Curves over finite fields of characteristic $2$ with many rational points. C.R.Acad. Sci. Paris 317, Série I (1993), 593-597. MR 94k:11068
  • [G-V2] G. van der Geer, M. van der Vlugt: Generalized Hamming weights of codes and curves over finite fields with many points. In: Israel Math Conf. Proc. 9 (1996), 417-432. MR 96m:11047
  • [G-V3] G. van der Geer, M. van der Vlugt: Quadratic forms, generalized Hamming weights of codes and curves with many points. J. of Number Theory 59 (1996), 20-36. MR 97i:11068
  • [G-V4] G. van der Geer, M. van der Vlugt: How to construct curves over finite fields with many points. In: Arithmetic Geometry, (Cortona 1994), F. Catanese Ed., Sympos. Math. 37 Cambridge Univ. Press, Cambridge, 1997, 169-189. MR 98h:11077
  • [G-V5] G. van der Geer, M. van der Vlugt: Tables for the function $N_{q}(g)$. Regularly updated tables at:
  • [G-V6] G. van der Geer, M. van der Vlugt: Generalized Reed-Muller codes and curves with many points. J. of Number Theory 72 (1998) 257-268. CMP 99:04
  • [G-V7] G. van der Geer, M. van der Vlugt: Constructing curves over finite fields with many rational points by solving linear equations. Report W 97-29, Leiden University 1997.
  • [G] V.D. Goppa : Codes on algebraic curves. Sov. Math. Dokl.24 (1981), 170-172. MR 82k:94017
  • [H] J.P. Hansen: Group codes and algebraic curves. Mathematica Gottingensis, Schriftenreihe SFB Geometrie und Analysis, Heft 9, 1987.
  • [H-Le B] G. Haché, D. Le Brigand: Effective construction of algebraic geometry codes. IEEE Trans. Inform. Theory 41 (1995), 1615-1628. MR 97g:94037
  • [H-S] J.P. Hansen, H. Stichtenoth: Group codes on certain algebraic curves with many rational points. Appl. Algebra Engrg. Comm.Comput. 1 (1990), 67-77. MR 96e:94023
  • [I] Y. Ihara: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Tokyo 28 (1981), 721-724. MR 84c:14016
  • [L1] K. Lauter: Ray class field constructions of curves over finite fields with many rational points. In: Algorithmic Number Theory (Talence 1996), H. Cohen Ed., Lecture Notes in Computer Science 1122, Springer, Berlin, 1996, 187-195. MR 98a:11076
  • [L2] K. Lauter: Non-existence of a curve over $\mathbb{F}_{3}$ of genus $5$ with $14$ rational points. Preprint 1998.
  • [L3] K. Lauter: Improved upper bounds for the number of rational points on algebraic curves over finite fields. Preprint, University of Michigan, 1999.
  • [M-Z-Z] O. Moreno, D. Zinoviev, V. Zinoviev: On several new projective curves over $\mathbb{F}_{2}$ of genus $3, 4$ and $5$. IEEE Trans. Inform. Theory 41 (1995), 1643-1645. MR 97b:14032
  • [N-X1] H. Niederreiter, C. P. Xing: Quasi-random points and global function fields. In: Finite Fields and Applications, S.D. Cohen, H.Niederreiter Eds., Cambridge Univ. Press, Cambridge 1996, 269-296. MR 97j:11037
  • [N-X2] H. Niederreiter, C. P. Xing: Explicit global function fields over the binary field with many rational places. Acta Arithm. 75 (1996), 383-396. MR 97d:11177
  • [N-X3] H. Niederreiter, C. P. Xing: Cyclotomic function fields, Hilbert class fields and global function fields with many rational places. Acta Arithm. 79 (1997), 59-76. MR 97m:11141
  • [N-X4] H. Niederreiter, C. P. Xing: Drinfeld modules of rank 1 and algebraic curves with many rational points II. Acta Arithm. 81 (1997), 81-100. CMP 97:14
  • [N-X5] H. Niederreiter, C. P. Xing: Global function fields fields with many rational points over the ternary field. Acta Arithm. 83 (1998), 65-86. MR 98j:11110
  • [N-X6] H. Niederreiter, C. P. Xing: Algebraic curves with many rational points over finite fields of characteristic $2$. To appear in: Proc.Number Theory Conference (Zakopane 1997), de Gruyter, Berlin.
  • [N-X7] H. Niederreiter, C. P. Xing: A general method of constructing global function fields with many rational places. To appear in: Algorithmic Number Theory (Portland 1998), Lecture Notes in Comp. Science, Springer, Berlin.
  • [N-X8] H. Niederreiter, C. P. Xing: Nets, $(t,s)$-sequences and algebraic geometry. To appear in Pseudo- and quasi-random point sets, P.Hellekalek, G. Larcher, Eds. Lecture Notes in Statistics, Springer, New York, 1998.
  • [O-S] F. Özbudak, H. Stichtenoth: Curves with many points and configurations of hyperplanes over finite fields. Preprint 1998.
  • [Sch] R. Schoof: Algebraic curves and coding theory. UTM 336, Univ.of Trento, 1990.
  • [Seg] B. Segre: Introduction to Galois geometries. Atti Acad.Naz. Lincei (Mem. Cl. Sci. Fis. Mat. Natur.) 8 (1967), 133-236. MR 39:206
  • [Sem] S. Sémirat: Genus theory for quadratic fields and applications. Preprint Université Paris VI, 1998.
  • [S1] J-P. Serre : Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini. C.R. Acad. Sci. Paris 296, Série I (1983), 397-402. (= Oeuvres III, No. 128, 658-663). MR 85b:14027; MR 89h:01109c
  • [S2] J-P. Serre : Nombre de points des courbes algébriques sur $\mathbb{F}_{q}$. Sém. de Théorie des Nombres de Bordeaux, 1982/83, exp. no. 22. (= Oeuvres III, No.129, 664-668). MR 86d:11051; MR 89h:01109c
  • [S3] J-P. Serre : Quel est le nombre maximum de points rationnels que peut avoir une courbe algébrique de genre $g$ sur un corps fini $\mathbb{F}_{q}$ ? Résumé des Cours de 1983-1984. (=Oeuvres III, No. 132, 701-705). MR 89h:01109c
  • [S4] J-P. Serre: Rational points on curves over finite fields. Notes of lectures at Harvard University 1985.
  • [S5] J-P. Serre: Letter to G. van der Geer, September 1, 1997.
  • [Sh] V. Shabat: Unpublished manuscript, University of Amsterdam, 1997/98.
  • [St1] H. Stichtenoth: Self-dual Goppa codes. J. Pure and Appl. Algebra 55 (1988), 199-211. MR 90a:11150
  • [St2] H. Stichtenoth: Algebraic-geometric codes associated to Artin-Schreier extensions of $\mathbb{F}_{q}(z)$. In: Proc. 2nd Int. Workshop on Alg. and Comb. Coding Theory, Leningrad (1990), 203-206.
  • [S-V] K.O. Stöhr, J. F. Voloch: Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), 1-19. MR 87b:14010
  • [Su] M. Suzuki: Private communication, 1998.
  • [Wi] M. Wirtz : Konstruktion und Tabellen linearer Codes. Westfälische Wilhelms-Universität Münster, 1991.
  • [Wo] J. Wolfmann: Nombre de points rationnels de courbes algébriques sur des corps finis associées à des codes cycliques. C.R. Acad.Sci. Paris 305, Série I (1987), 345-348. MR 88k:11025
  • [X-N] C. P. Xing, H. Niederreiter: Drinfeld modules of rank 1 and algebraic curves with many rational points. Report Austrian Academy of Sciences, Vienna, 1996.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11G20, 14G15, 14H05

Retrieve articles in all journals with MSC (1991): 11G20, 14G15, 14H05


Additional Information

Gerard van der Geer
Affiliation: Faculteit WINS, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
Email: geer@wins.uva.nl

Marcel van der Vlugt
Affiliation: Mathematisch Instituut, Rijksuniversiteit te Leiden, Niels Bohrweg 1, 2300 RA Leiden, The Netherlands
Email: vlugt@wi.leidenuniv.nl

DOI: https://doi.org/10.1090/S0025-5718-99-01143-6
Received by editor(s): October 2, 1997
Received by editor(s) in revised form: April 28, 1998
Published electronically: August 18, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society