Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Stability of Runge-Kutta methods
for quasilinear parabolic problems

Authors: C. González and C. Palencia
Journal: Math. Comp. 69 (2000), 609-628
MSC (1991): Primary 65M12, 65M15, 65M20, 65L06, 65J10, 65J15
Published electronically: May 20, 1999
MathSciNet review: 1659851
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a quasilinear parabolic problem

\begin{displaymath}u'(t) = Q\big( u(t) \big) u(t), \qquad u(t_0) = u_0 \in \mathcal{D}, \end{displaymath}

where $Q(w) : \mathcal{D}\subset X \to X$, $w \in W \subset X$, is a family of sectorial operators in a Banach space $X$ with fixed domain $\mathcal{D}$. This problem is discretized in time by means of a strongly A($\theta$)-stable, $0 < \theta \le\pi/2$, Runge-Kutta method. We prove that the resulting discretization is stable, under some natural assumptions on the dependence of $Q(w)$ with respect to $w$. Our results are useful for studying in $L^p$ norms, $1 \le p \le + \infty$, many problems arising in applications. Some auxiliary results for time-dependent parabolic problems are also provided.

References [Enhancements On Off] (What's this?)

  • 1. P. ACQUISTAPACE, Abstract linear nonautonomous parabolic equations: A survey, in Differential Equations in Banach Spaces, Proceedings 1991, Ed. G. Dore, A. Favini, E. Obrecht and A. Venni, Lectures Notes in Pure and Applied Mathematics 148, Dekker (1993), pp. 1-19. MR 94f:34113
  • 2. KH. ALIBEKOV AND P. E. SOBOLEVSKII, Stability and convergence of difference schemes of high order of approximation for parabolic equations, Ukr. Mat. Zh., 31 (1979), pp. 1-99; English transl., Ukrainian Math. J., 31 (1979), pp. 1-99. MR 81i:65040
  • 3. H. AMANN, Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., 293 (1986), pp. 1-99. MR 87d:35070
  • 4. H. AMANN, Dynamic theory of quasilinear parabolic equations - I. Abstract evolution equations, Nonlin. Anal. Th. Meth. and Appl., 12 (1988), pp. 1-99. MR 89j:35072
  • 5. H. AMANN, Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 18 (1991), pp. 1-99. MR 92m:35145
  • 6. H. AMANN, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Theory, Monographs in Mathematics, Vol. 89, Birkhäuser, Basel, 1995. MR 96g:34088
  • 7. N. BAKAEV, On the stability of nonlinear difference problems constructed by the Runge-Kutta method, deposited in VINITI, No. 1507-V91, 1991.
  • 8. J. BELL, A. FRIEDMAN AND A. A. LACEY, On solutions of quasi-linear diffusion problem from the study of soft tissue, SIAM J. Appl. Math., 51 (1991), pp. 1-99. MR 91k:35131
  • 9. J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976. MR 58:2349
  • 10. PH. CLÉMENT, C. J. VAN DUIJN AND S. LI, On a nonlinear elliptic-parabolic partial differential equation system in a two-dimensional groundwater flow problem, SIAM J. Numer. Anal., 23 (1992), pp. 1-99. MR 93h:35089
  • 11. D. S. COHEN AND A. B. WHITE, Sharp fronts due to diffusion and viscoelastic relaxation in polymers, SIAM J. Appl. Math., 51 (1991), pp. 1-99. MR 91k:35058
  • 12. M. CROUZEIX, S. LARSSON AND V. THOMÉE, Resolvent estimates for finite elements operators in one dimension, Math. Comp., 63 (1994), pp. 1-99. MR 95b:65134
  • 13. C. GONZÁLEZ AND C. PALENCIA, Stability of time-stepping methods for abstract time-dependent parabolic problems, SIAM J. Numer. Anal., 35 (1998), 979-989. MR 99b:65072
  • 14. C. GONZÁLEZ AND C. PALENCIA, Stability of time-stepping methods for time-dependent parabolic problems: The Hölder case, Math. Comp., 68 (1999), 73-89. MR 99c:65108
  • 15. E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second Edition, Springer-Verlag, Berlin, 1996. MR 97m:65007
  • 16. CH. LUBICH AND A. OSTERMANN, Runge-Kutta approximation of quasilinear parabolic equations, Math. Comp., 64 (1995), pp. 601-627. MR 95g:65122
  • 17. CH. LUBICH AND A. OSTERMANN, Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behavior, Appl. Numer. Math., 22 (1996), pp. 1-99. MR 97m:65148
  • 18. A. LUNARDI, Global solutions of abstract quasilinear parabolic equations, J. Diff. Eq., 58 (1985), pp. 1-99. MR 86j:34071
  • 19. S. G. KREIN, Linear Differential Equations in Banach Space, Transl. of Math. Monographs, vol. 29, Amer. Math. Society, 1972. MR 49:7548
  • 20. A. OSTERMANN AND M. ROCHE, Runge-Kutta methods for partial differential equations and fractional order of convergence, Math. Comp., 59 (1992), pp. 1-99. MR 93a:65125
  • 21. C. PALENCIA, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal., 33 (1996), pp. 1-99. MR 97e:65099
  • 22. A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. MR 85g:47061
  • 23. P. E. SOBOLEVSKII, Equations of parabolic type in Banach space, Amer. Math. Soc. Transl., 49 (1966), pp. 1-99. MR 25:5297
  • 24. H. TANABE, Equations of Evolution, Pitman, London, 1979. MR 82g:47032
  • 25. H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. MR 80i:46032

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65M12, 65M15, 65M20, 65L06, 65J10, 65J15

Retrieve articles in all journals with MSC (1991): 65M12, 65M15, 65M20, 65L06, 65J10, 65J15

Additional Information

C. González
Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain

C. Palencia
Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain

Received by editor(s): March 12, 1997
Received by editor(s) in revised form: February 23, 1998, and June 9, 1998
Published electronically: May 20, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society