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THREE NEW FACTORS OF FERMAT NUMBERS

R. P. BRENT, R. E. CRANDALL, K. DILCHER, AND C. VAN HALEWYN

Abstract. We report the discovery of a new factor for each of the Fermat
numbers F13, F15, F16. These new factors have 27, 33 and 27 decimal digits
respectively. Each factor was found by the elliptic curve method. After divi-
sion by the new factors and previously known factors, the remaining cofactors
are seen to be composite numbers with 2391, 9808 and 19694 decimal digits
respectively.

1. Introduction

For a nonnegative integer n, the n-th Fermat number is Fn = 22n + 1. It is
known [12] that Fn is prime for 0 ≤ n ≤ 4, and composite for 5 ≤ n ≤ 23. For a
brief history of attempts to factor Fermat numbers, we refer to [3, §1] and [5].

In recent years several factors of Fermat numbers have been found by the elliptic
curve method (ECM). Brent [2, 3, 4] completed the factorization of F10 (by finding
a 40-digit factor) and F11. He also “rediscovered” the 49-digit factor of F9 and the
five known prime factors of F12. Crandall [10] discovered two 19-digit factors of
F13.

This paper reports the discovery of 27-digit factors of F13 and F16 (the factor of
F13 was announced in [3, §8]) and of a 33-digit factor of F15. All three factors were
found by ECM, although the implementations and hardware differed between F13

and F15, F16. In fact, we used Dubner Crunchers (see §3) on Fn for 12 ≤ n ≤ 14,
and Sun workstations with DWT multiplication (see §4.2) for 16 ≤ n ≤ 21, as
well as a Pentium Pro for n = 15, again with DWT multiplication. Details of the
computations on F13, F16 and F15 are given in §5, §6 and §7 respectively.
F16 is probably the largest number for which a nontrivial factor has been found

by ECM. Factors of larger numbers are customarily found by trial division [16, 18].

2. The elliptic curve method

ECM was invented by H. W. Lenstra, Jr. [23]. Various practical refinements
were suggested by Brent [1], Montgomery [24, 25], and Suyama [32]. We refer
to [3, 14, 22, 26, 31] for a description of ECM and some of its implementations.

In the following, we assume that ECM is used to find a prime factor p > 3 of a
composite number N , not a prime power [21, §2.5]. The first-phase limit for ECM
is denoted by B1.
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Although p is unknown, it is convenient to describe ECM in terms of operations in
the finite field K = GF (p) = Z/pZ. In practice we work modulo N (or sometimes
modulo a multiple of N , if the multiple has a convenient binary representation),
and occasionally perform GCD computations which will detect a nontrivial factor
of N .

The computations reported here used two parameterizations of elliptic curves.
These are the symmetrical Cauchy form [9, §4.2]:

x3 + y3 + z3 = κxyz,(1)

and the homogeneous form recommended by Montgomery [24]:

by2z = x3 + ax2z + xz2.(2)

Here κ, a and b are constants satisfying certain technical conditions. For details we
refer to [3, §2.1].

The points (x, y, z) satisfying (1) or (2) are thought of as representatives of ele-
ments of P 2(K), the projective plane over K, i.e. the points (x, y, z) and (cx, cy, cz)
are regarded as equivalent if c 6≡ 0 mod p. We write (x : y : z) for the equivalence
class containing (x, y, z). When using (2) it turns out that the y-coordinate is not
required, and we can save work by not computing it. In this case we write (x : : z).

2.1. The starting point. An advantage of using (2) over (1) is that the group
order is always a multiple of four (Suyama [32]; see [24, p. 262]). It is possible to
ensure that the group order is divisible by 8, 12 or 16. For example, if σ /∈ {0, 1, 5},

u = σ2 − 5, v = 4σ,
x1 = u3, z1 = v3,(3)

a =
(v − u)3(3u+ v)

4u3v
− 2,

then the curve (2) has group order divisible by 12. As starting point we can take
(x1 : : z1). It is not necessary to specify b or y1. When using (2) we assume that
the starting point is chosen as in (3), with σ a pseudo-random integer.

3. The Dubner Cruncher

The Dubner Cruncher [8, 15] is a board which plugs into an IBM-compatible PC.
The board has a digital signal processing chip (LSI Logic L64240 MFIR) which,
when used for multiple-precision integer arithmetic, can multiply two 512-bit num-
bers in 3.2 µsec. A software library has been written by Harvey and Robert Dub-
ner [15]. This library allows a C programmer to use the Cruncher for multiple-
precision integer arithmetic. Some limitations are:

1. Communication between the Cruncher and the PC (via the PC’s ISA bus)
is relatively slow, so performance is much less than the theoretical peak for
numbers of less than say 1000 bits.

2. Because of the slow communication it is desirable to keep operands in the on-
board memory, of which only 256 KByte is accessible to the C programmer.

The combination of a cheap PC and a Cruncher board ($US2,500) is currently
very cost-effective for factoring large integers by ECM. The effectiveness of the
Cruncher increases as the integers to be factored increase in size. However, due to
memory limitations, we have not attempted to factor Fermat numbers larger than
F15 on a Cruncher. A number the size of F15 requires 4 KByte of storage.
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4. Arithmetic

4.1. Multiplication and division. Most of the cost of ECM is in performing
multiplications mod N . Our Cruncher programs all use the classical O(w2) algo-
rithm to multiply w-bit numbers. Karatsuba’s algorithm [19, §4.3.3] or other “fast”
algorithms [11, 13] are preferable for large w on a workstation. The crossover point
depends on details of the implementation. Morain [27, Ch. 5] states that Kara-
tsuba’s method is worthwhile for w ≥ 800 on a 32-bit workstation. On a Cruncher
the crossover is much larger because the multiplication time is essentially linear
in w for w < 10000 (see [3, Table 4]).

Our programs avoid division where possible. If the number N to be factored is
a composite divisor of Fn, then the elliptic curve operations are performed mod Fn
rather than mod N . At the end of each phase we compute a GCD with N . The
advantage of this approach is that we can perform the reductions mod Fn using
binary shift and add/subtract operations, which are much faster than multiply or
divide operations. Thus, our Cruncher programs run about twice as fast on Fermat
(or Mersenne) numbers as on “general” numbers.

4.2. Use of the discrete weighted transform. For Fn with n > 14 we found
it more efficient overall to employ standard workstations with an asymptotically
fast multiplication algorithm rather than special hardware. For these larger Fn we
employed the “discrete weighted transform” (DWT) of Crandall and Fagin [10, 13].
In this scheme, one exploits the fact that multiplication modulo Fn is essentially a
negacyclic convolution [11] which can be effected via three DWTs. For two integers
x, y to be multiplied modulo Fn, one splits each of x, y into D digits in some baseW ,
with D log2W = 2n. We actually used W = 216, and employed the “balanced digit”
scheme which is known to reduce floating-point convolution errors [10]. The three
length-D/2 DWTs were then performed using a split-radix complex-FFT algorithm.
The operation complexity is O(D logD), and 64-bit IEEE floating point arithmetic
is sufficiently precise to attack Fermat numbers at least as large as F21 in this
way. Our DWT approach becomes more efficient than “grammar-school” O(D2)
methods in the region n ∼ 12. However, the Cruncher hardware is so fast that a
Cruncher performs faster than a 200 Mhz Pentium Pro workstation for n ≤ 14.

The advantage of DWT methods is not restricted to multiplication. The elliptic
curve algebra using the Montgomery parameterization (2) can be sped up in a
fundamental way via transforms. The details are given in [10]; for present purposes
we give one example of this speedup. For the point-adding operation

xm+n

zm+n
=
z|m−n|(xmxn − zmzn)2

x|m−n|(xmzn − xnzm)2

it is evident that one can compute the transforms of xm, xn, zm, zn, then compute
the relevant cross-products in spectral space, then use the (stored) transforms of
x|m−n|, z|m−n| to obtain xm+n, zm+n in a total of 14 DWTs, which is equivalent to
14/3 ' 4.67 multiplies. Similar enhancements are possible for point-doubling.

Memory capacity is a pressing concern for the largest Fermat numbers under
consideration (F16 through F21). Another enhancement for the ECM/DWT imple-
mentation is to perform the second stage of ECM in an efficient manner. We note
that a difference of x-coordinates can be calculated from

xmzn − xnzm = (xm − xn)(zm + zn)− xmzm + xnzn,
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and a small table of xmzm can be stored. Thus the coordinate difference requires
only one multiply, plus one multiply for accumulation of all such differences. Again,
if DWTs are used, one stores the transforms of xm, zm, xmzm, whence the difference
calculation comes down to 2/3 of a multiply, plus the accumulation multiply. The
accumulation of differences can likewise be given a transform enhancement, with the
result that each coordinate difference in stage two consumes only 4/3 of a multiply.
In practice, this second stage efficiency allows the choices of stage two limit B2 at
least as large as 50B1.

4.3. GCD computation. It is nontrivial to compute GCDs for numbers in the
F21 region. We used a recursive GCD implementation by J. P. Buhler [6], based on
the Schönhage algorithm [7, 28]. The basic idea is to recursively compute a 2× 2
matrix M such that if v = (a, b)T is the column vector containing the two numbers
whose GCD we desire, then Mv = (0, gcd(a, b))T . The matrix M is a product of
2×2 matrices and is computed by finding the “first half” of the product recursively.
The first-half function calls itself twice recursively (for details see [7]). In practice
it is important to revert to a classical algorithm (such as Euclid’s) for small enough
integers. We found that GCDs taken during factorization attempts on numbers as
small as F13 could be speeded up by using the recursive algorithm. In the region of
F21 the recursive approach gives a speedup by a factor of more than 100 over the
classical GCD.

The Cruncher programs use the classical (non-recursive) GCD but only perform
two GCDs per curve (one at the end of each phase). This is possible, at a small cost
in additional multiplications, because the programs use the homogeneous forms (1)
and (2) and never divide by the z-coordinate.

5. A new factor of F13

Our first Cruncher ECM program [3, Program F] was implemented and debugged
early in December 1994. It used the Cauchy form (1) with a “birthday paradox”
second phase. In the period January – June 1995 we used a Cruncher in an 80386/40
PC to attempt to factor F13 (and some other numbers). We mainly used phase 1
limit B1 = 100000. On F13 each curve took 137 minutes (91 minutes for phase 1
and 46 minutes for phase 2). At the time three prime factors of F13 were known:

F13 = 2710954639361 · 2663848877152141313 · 3603109844542291969 · c2417.

The first factor was found by Hallyburton and Brillhart [17]. The second and
third factors were found by Crandall [10] on Zilla net (a network of about 100
workstations) in January and May 1991, using ECM.

On June 16, 1995 our Cruncher program found a fourth factor

p27 = 319546020820551643220672513 = 219 · 51309697 · 11878566851267 + 1

after a total of 493 curves with B1 = 100000. The overall machine time was about
47 days. We note that p27 + 1 = 2 · 3 · 73 · 59 · p22. The factorizations of p27 ± 1
explain why Pollard’s p ± 1 methods could not find the factor p27 in a reasonable
time.

The successful curve was of the form (1), with initial point (x1 : y1 : z1) =
(150400588188733400929847531 : 277194908510676462587880207 : 1) mod p27 and
group order

g = 32 · 72 · 13 · 31 · 3803 · 6037 · 9887 · 28859 · 274471.
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Table 1. Some curves finding the p27 factor of F13

σ g

1915429 24 · 3 · 29 · 857 · 12841 · 42451 · 48299 · 10173923
2051632 23 · 3 · 17 · 19 · 1031 · 23819 · 65449 · 86857 · 295277
2801740 22 · 3 · 7 · 79 · 157 · 19813 · 89237 · 122819 · 1412429
4444239 22 · 3 · 23 · 173 · 191 · 907 · 1493 · 3613 · 4013 · 1784599
6502519 22 · 3 · 23 · 131 · 14011 · 305873 · 433271 · 4759739
8020345 23 · 3 · 17 · 23 · 41 · 113 · 271 · 3037 · 10687 · 12251 · 68209
8188713 22 · 32 · 17 · 41 · 47 · 139 · 181 · 34213 · 265757 · 1184489

Using Fermat’s little theorem [5, p. lviii], we found the 2391-digit quotient
c2417/p27 to be composite. Thus, we now know that

F13 = 2710954639361 · 2663848877152141313
· 3603109844542291969 · 319546020820551643220672513 · c2391.

At about the time that the p27 factor of F13 was found, our Cruncher ECM
program was modified to use the Montgomery form (2) with the “improved standard
continuation” second phase [3, §3.2]. Testing the new program with B1 = 500000
and second-phase limit B2 = 35B1, we found p27 seven times, with a total of 579
curves. The expected number of curves, predicted as in [3, § 4.4], is 7× 137 = 959.
The successful curves are defined by (3), with σ and the group order g given in
Table 1.

The fact that our programs found the same 27-digit factor many times suggests
(but does not prove) that the unknown factors of F13 are larger than p27.

When testing our program with B1 = 500000, we also “rediscovered” both
of Crandall’s 19-digit factors using the same elliptic curve (mod F13). In fact,
our program returned the 39-digit product of Crandall’s factors. Taking σ =
6505208 in (3), the group corresponding to the factor 2663848877152141313 has
order 22 · 32 · 1879 · 2179 · 3677 · 4915067, and the group corresponding to the factor
3603109844542291969 has order 24 · 3 · 72 · 22003 · 79601 · 874661, so both factors
will be found if B1 ≥ 79601 and B2 ≥ 4915067.

6. A new factor of F16

The DWT/ECM program was run on a small network of SPARCstations at
Dalhousie University from June 1996, in an attempt to find factors of F16, . . . , F20.
It was known that

F16 = 825753601 · c19720

where the 9-digit factor was found by Selfridge [29].
Over the period September to December1996 an average of 6 SPARCstations ran

the DWT/ECM program exclusively on F16 and in December found a new factor

p27 = 188981757975021318420037633

of F16. Since

p27 − 1 = 220 · 32 · 31 · 37 · 13669 · 1277254085461
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and

p27 + 1 = 2 · 240517 · 1389171559 · 282805744939,

it would have been very difficult to find p27 by Pollard’s p± 1 methods.
We remark that p27 was found twice – the first time with B1 = 400000, B2 =

50B1, σ = 1944934539, and group order

g = 22 · 3 · 53 · 7 · 13 · 19 · 83 · 113 · 2027 · 386677 · 9912313,

and the second time with B1 = 200000, B2 = 50B1, σ = 125546653, and group
order

g = 22 · 32 · 72 · 109 · 761 · 2053 · 20297 · 101483 · 305419.

The ECM limits were set so that each curve required roughly four days of CPU.
Altogether, we ran 130 curves with various B1 ∈ [50000, 400000].

The quotient q = c19720/p27 was a 19694-digit number. We computed x =
3q mod q and found x 6= 3. Thus, q is composite, and we now know that

F16 = 825753601 · 188981757975021318420037633 · c19694.

As a check, the computation of q and x was performed independently by Brent and
Crandall (using different programs on different machines in different continents).
In both cases the computations found x mod 216 = 12756.

7. A new factor of F15

Using the same DWT/ECM program, run on a 200 MHz Pentium Pro, a search
for a new factor of F15 was attempted during the Spring and early Summer of 1997.
It was known that

F15 = 1214251009 · 2327042503868417 · c9840,

where the 13- and 16-digit prime factors were found by Kraitchik (1925; see [20])
and Gostin (1987; see [16]) respectively.

On July 3, 1997 we found the new factor

p33 = 168768817029516972383024127016961

after running only three curves with B1 = 107 and B2 = 50B1. Each curve took
approximately 920 hours of CPU time (a Cruncher would have taken about 1250
hours per curve). The successful curve had σ = 253301772 and group order

g = 25 · 3 · 4889 · 5701 · 9883 · 11777 · 5909317 · 91704181.

As before, we remark that

p33 − 1 = 217 · 5 · 7 · 53 · 97 · 181 · 199 · 1331471 · 149211834097

and

p33 + 1 = 2 · 3 · 61 · 5147 · 9835373 · 9108903846900395897.

To determine whether the 9808-digit cofactor q′ = c9840/p33 is composite, we
computed x′ = 3q

′
mod q′ and found x′ 6= 3; in fact, the least positive residue

x′ mod 216 is 557. As before, q′ and x′ were computed independently by Brent and
Crandall.
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Note added in proof. On April 16, 1999, Richard McIntosh and Claude Tardif of
the University of Regina found the new 23-digit factor

81274690703860512587777 = 223 · 29 · 293 · 1259 · 905678539 + 1

of F18, using the same method and software as described in Section 4. McIntosh and
Tardif report that they were successful after having run about a dozen curves with
B1 = 100 000, B2 = 40B1 on a Sparc Ultra 1; the successful σ was σ = 731185968.
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