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RANDOM FIBONACCI SEQUENCES
AND THE NUMBER 1.13198824 . . .

DIVAKAR VISWANATH

Abstract. For the familiar Fibonacci sequence (defined by f1 = f2 = 1,
and fn = fn−1 + fn−2 for n > 2), fn increases exponentially with n at a

rate given by the golden ratio (1 +
√

5)/2 = 1.61803398 . . . . But for a simple
modification with both additions and subtractions — the random Fibonacci
sequences defined by t1 = t2 = 1, and for n > 2, tn = ±tn−1 ± tn−2, where
each ± sign is independent and either + or − with probability 1/2 — it is not
even obvious if |tn| should increase with n. Our main result is that

n
√
|tn| → 1.13198824 . . . as n→∞

with probability 1. Finding the number 1.13198824 . . . involves the theory
of random matrix products, Stern-Brocot division of the real line, a fractal
measure, a computer calculation, and a rounding error analysis to validate the
computer calculation.

1. Introduction

The Fibonacci numbers defined by f1 = f2 = 1 and fn = fn−1 + fn−2 for
n > 2 are widely known. It is equally well-known that |fn| increases exponentially
with n at the rate (1 +

√
5)/2. Consider random Fibonacci sequences defined

by the random recurrence t1 = 1, t2 = 1, and for n > 2, tn = ±tn−1 ± tn−2,
where each ± sign is independent and either + or − with probability 1/2. Do the
random Fibonacci sequences level off because of the subtractions? Or do the random
Fibonacci sequences increase exponentially with n like the Fibonacci sequence? If
so, at what rate? The answer to these questions brings Stern-Brocot sequences, a
beautiful way to divide the real number line that was first discovered in the 19th
century, and fractals and random matrix products into play. The final answer is
obtained from a computer calculation, raising questions about computer assisted
theorems and proofs.

Below are three possible runs of the random Fibonacci recurrence:

1, 1,−2,−3,−1, 4,−3, 7,−4, 11,−15, 4,−19, 23,−4, . . .
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 223, 357, 580, . . .
1, 1,−2, 1, 1,−2, 1, 1,−2, 1, 1,−2, 1, 1,−2, . . .

The first of the runs above was randomly generated on a computer. The second run
is the familiar Fibonacci sequence. The last of the three runs above is a sequence
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Figure 1. (a) A semilog plot of |tn| vs. n for a computer generated
random Fibonacci sequence tn showing a clear exponential trend.
The dashed line is 1.132n. (b) Plot of n

√
|tn| vs. n. As n increases

to a million, n
√
|tn| seems to settle down to a constant close to

1.132.

that remains bounded as n→∞; but such runs with no exponential growth occur
with probability 0. For longer, typical runs see Figure 1. Numerical experiments
in Figure 1 illustrate our main result (Theorem 4.2), that

n
√
|tn| → 1.13198824 . . . as n→∞

with probability 1. Thus 1.13198824 . . . gives the exponential rate of increase of
|tn| with n for random Fibonacci sequences, just as the golden ratio (1 +

√
5)/2

gives the exponential rate of increase of the Fibonacci numbers.
For the random Fibonacci recurrence tn = ±tn−1±tn−2 as well as the recurrence

tn = ±tn−1 + tn−2 with each ± independent and + or − with probability 1/2, |tn|
is either |tn−1|+ |tn−2| or

∣∣|tn−1|−|tn−2|
∣∣ with probability 1/2. As our interest is in

|tn| vs. n as n→∞, we restrict focus to tn = ±tn−1 + tn−2 and call it the random
Fibonacci recurrence. As a result, the presentation becomes briefer, especially in
Section 3.

The next step is to rewrite the random Fibonacci recurrence using matrices. In
matrix form the random Fibonacci recurrence is

( tn−1
tn

)
=
(

0 1
1 ±1

)( tn−2
tn−1

)
, with one

of the two matrices

A =
(

0 1
1 1

)
, B =

(
0 1
1 −1

)
(1.1)

picked independently with probability 1/2 at each step. Let µf denote the distribu-
tion that picks A or B with probability 1/2. Then the random matrix Mn chosen
at the nth step is µf -distributed and independent of Mi for i 6= n. Moreover,(

tn−1

tn

)
= Mn−2 . . .M1

(
1
1

)
,

where Mn−2 . . .M1 is a product of independent, identically distributed random
matrices.
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Known results from the theory of random matrix products imply that

log‖Mn . . .M1‖
n

→ γf as n→∞,(1.2)

n
√
|tn| → eγf as n→∞,(1.3)

for a constant γf with probability 1 [7, p. 11, p. 157]. About γf itself known theory
can only say that γf > 0 [7, p. 30]. Our aim is to determine γf or eγf exactly.
Theorem 4.2 realizes this aim by showing that eγf = 1.13198824 . . . . The limit in
(1.3) is the same γf for any norm over 2-dimensional matrices, because all norms
over a finite dimensional vector space are equivalent. In the rest of this paper, all
norms are 2-norms, and all matrices and vectors are real and 2-dimensional except
when stated otherwise. Thus, for a vector x, ‖x‖ is its Euclidean length in the real
plane, and for a matrix M , ‖M‖ = supx 6=0

‖Mx‖
‖x‖ .

The limit (1.2) for Mi independent but identically distributed over d-dimensional
matrices has been a central concern of the theory of random matrix products.
Furstenberg and Kesten [19, 1960] have shown that the limit (1.2) exists under
very general conditions. When it exists, that limit is usually denoted by γ and
called the upper Lyapunov exponent. Furstenberg [18, 1963] has shown that when
the normalizing condition |detMi| = 1 holds, as it does for µf , “usually” γ > 0.
Furstenberg’s theorem implies, for example, that γf > 0, and hence, that |tn|
increases exponentially with n with probability 1.

In spite of the importance of the upper Lyapunov exponent γ , γ is known exactly
for very few examples. Kingman, one of the pioneers of subadditive ergodic theory,
of which the theory of random matrix products is a special case, wrote [26, 1973]:

Pride of place among the unsolved problems of subadditive ergodic the-
ory must go to the calculation of the constant γ ( . . . ). In none of the
applications described here is there an obvious mechanism for obtaining
an exact numerical value, and indeed this usually seems to be a problem
of some depth.

One of the applications Kingman refers to is the general problem of finding γ
for random matrix products. For this and other applications, Kingman’s problem
is still unsolved. Bougerol [7, p. 33] and Lima and Rahibe [31] calculate γ for
some examples. The work of Chassaing, Letac and Mora [11] is closer to our
determination of γf . But in all their examples, matrices, unlike B in (1.1), have
only non-negative entries. In our opinion, the random Fibonacci recurrence is
more natural than these examples. In fact, the random Fibonacci recurrence in a
more general form appears as a motivating example in the very first paragraph of
Furstenberg’s famous paper [18].

In Section 2, we present a formula for γf due to Furstenberg that forms the basis
for this paper. The matrices A and B map a direction in the real plane of slope m
to directions of slope 1 + 1/m and −1 + 1/m, respectively. Since µf picks A or B
with probability 1/2, it induces the random walk which sends a direction of slope
m to a direction of slope 1 + 1/m or −1 + 1/m with probability 1/2. The invariant
probability measure for this random walk is central to Furstenberg’s formula.

In Section 3, we find that invariant probability measure, denoted by νf , using
the Stern-Brocot division of the real line. See Figures 3, 4. The measure νf gives
a probability measure over the real line R because the slope m can be any real
number. Since the backward maps for the random walk are m→ 1/(±1 +m), the
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invariance condition requires

νf ([a, b]) =
1
2
νf

([ 1
−1 + b

,
1

−1 + a

])
+

1
2
νf

([ 1
1 + b

,
1

1 + a

])
,

for any interval [a, b] with ±1 /∈ (a, b). Since the slopes of the backward maps vary in
magnitude from 0 to ∞, not only is νf self-similar [37], the self-similarity equation
has multiple scales. Self-similar functions, especially ones with multiple scales,
usually turn out to be fractals. For example, Weierstrass’s nowhere-differentiable
but continuous functions, which are commonly used examples of fractal graphs,
satisfy f(x) = λs−2 sin(λt) + λf(λt) with 1 < s < 2, λ > 1, and λ large enough
[17]. Repetition of the same structure at finer scales and an irregular appearence
in Figure 4 suggest that νf too may be a type of fractal.

In Section 4, we use Furstenberg’s formula and the invariant measure νf given in
Section 3, and arrive at Theorem 4.2 (eγf = 1.13198824 . . . ). The proof of Theorem
4.2 depends on a computer calculation. Thus its correctness depends not only upon
mathematical arguments that can be checked line by line, but upon a program that
can also be checked line by line and the correct implementation of various software
and hardware components of the computer system. The most famous of theorems
whose proofs depend on computer calculations is the four color theorem. The first
proof of the four color theorem (all planar graphs can be colored using only four
colors so that no two adjacent vertices have the same color) by Appel, Haken and
Koch caused controversy and aroused great interest because it relied on producing
and checking 1834 graphs using 1200 hours of 1976 computer time [28], [2]. In spite
of improvements (for example, the number 1834 was brought down to 1482 soon
afterwards by Appel and Haken themselves), all proofs of the four color theorem
still rely on the computer.

Computer assisted proofs are more common now. Our computation uses floating
point arithmetic, which is inexact owing to rounding errors. Thus it becomes
necessary to bound the effect of the rounding errors, which we do in the appendix.
An early example of rigorous use of floating point arithmetic is due to Brent [9].
Lanford’s proof of Feigenbaum’s conjecture about the period doubling route to
chaos used interval arithmetic [29]. The computer assisted proof of chaos in the
Lorenz equations announced by Mischaikow and Mrozek [32] [33] is another notable
example. We will discuss the use of floating point arithmetic and other issues related
to our Theorem 4.2 in Section 4.

Besides random matrix products, random Fibonacci sequences are connected to
many areas of mathematics. For example, the invariant measure νf is also the
distribution of the continued fractions

±1 +
1

±1 +
1

±1 + · · ·
with each ±1 independent and either +1 or −1 with probability 1/2. The matrices
A and B in (1.1) can both be thought of as Möbius transformations of the complex
plane; then the random matrix product and the exponential growth of |tn| in (1.2)
and (1.3) would correspond to the dynamics of complex numbers acted upon by a
composition of the Möbius transformations A and B [7, p. 38]. Also, the random
walk on slopes m→ ±1+1/m can be thought of as a random dynamical system [3].
These different interpretations amount merely to a change of vocabulary as far as
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the computation of γf is concerned; but each interpretation offers a different point
of view.

The study of random matrix products, initiated by Bellman [4, 1954], has led
to many deep results and applications. Applications have been made to areas
as diverse as Schrödinger operators, image generation, and demography [14], [15],
[40]. Furstenberg and Kesten [19, 1960], Furstenberg [18, 1963], Oseledec [34, 1968],
Kingman [26, 1973], and Guivarc’h and Raugi [21, 1985] are some of the profound
contributions to this area. We enthusiastically recommend the lucid, elegant and
well-organized account by Bougerol [7]. For a more modern treatment, see [5]. For
the basics of probability, our favorite is Breiman [8].

Our interest in random recurrences was aroused by their connection to random
triangular matrices [42]. The asymptotic behaviour as n → ∞ of the condition
number of a triangular matrix of dimension n whose entries are independent, iden-
tically distributed random variables can be deduced from the asymptotic behaviour
of a random recurrence. In particular, let Ln be a lower triangular matrix of di-
mension n whose diagonal entries are all 1 and whose subdiagonal entries are +1
or −1 with probability 1/2. Consider the random recurrence

r1 = 1
r2 = ±r1

r3 = ±r1 ± r2

...
rn = ±r1 ± r2 ± · · · ± rn−1,

where each ± is independent, and + or − with probability 1/2. Unlike the random
Fibonacci recurrence, this recurrence has infinite memory. The limits

lim
n→∞

n

√
‖Ln‖2‖L−1

n ‖2 and lim
n→∞

n
√
|rn|

are equal if either of the limits is a constant almost surely. Unable to find these
limits, we considered random Fibonacci sequences as a simplification. But the limit

lim
n→∞

n

√
‖Ln‖2‖L−1

n ‖2

is determined when entries of Ln are drawn from various other distributions, in-
cluding normal and Cauchy distributions, in [42]. For a conjecture about random
recurrences along the lines of Furstenberg’s theorem, see [41].

2. Furstenberg’s formula

To determine γf , we use a formula from the theory of random matrix products
that complements (1.2). Three things that will be defined below — the notation x
for directions in the real plane R2, amp(x), which is a smooth function of x (the
diagram just after (2.2)), and νf (x) which is a probability measure over directions
x̄ (Figure 4) — combine to give a formula for γf :

γf =
∫

amp(x)dνf (x).(2.1)

This formula, derived by Furstenberg [7, p. 77], is the basis of our determination
of γf .
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101

1/(1+m)

1/(1+m)

l1

l2

l

Figure 2. By (2.2), νf (I) = νf (I1)/2 + νf (I2)/2.

Directions x can be parameterized using angles, x =
(

cos θ
sin θ

)
with θ ∈ (−π/2, π/2],

or using slopes, x =
(

1
m

)
with m ∈ (−∞,∞]. Slopes m and angles θ are related by

m = tan θ and θ = arctanm. We use slopes in all places except Figure 4. In our
notation, x is a vector in the direction x, and x is the direction of the vector x for
x 6= 0.

To define νf , consider the µf -induced random walk on directions that sends
x0 to x1 = Ax0 or to x1 = Bx0 with probability 1/2, and then sends x1 to x2

similarly, and so on. In terms of slopes, the slope m is mapped by the random walk
to 1 + 1/m or to −1 + 1/m with probability 1/2. The measure νf is the unique
invariant probability measure over x for this random walk, i.e.,

νf (S) =
1
2
νf (A−1S) +

1
2
νf (B−1S),

where S is any Borel measurable set of directions. We also say that νf is µf -
invariant. For the existence and uniqueness of νf , see [7, p. 10, p. 32]. It is
also known that νf must be continuous [7, p. 32], i.e., νf ({x}) = 0 for any fixed
direction x.

Since the bijections x → A−1x and x → B−1x (sometimes called backward
maps) map the slope m to 1/(−1+m) and to 1/(1+m), respectively, the condition
for µf -invariance in terms of slopes is

νf ([a, b]) =
1
2
νf

([ 1
−1 + b

,
1

−1 + a

])
+

1
2
νf

([ 1
1 + b

,
1

1 + a

])
,(2.2)

where [a, b] is any interval in the real line with ±1 /∈ (a, b). See Figure 2.
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The function amp(x) defined by

amp(x) =
1
2

log
‖Ax‖
‖x‖ +

1
2

log
‖Bx‖
‖x‖

gives the average amplification in the direction x when x is multiplied by A or B
with probability 1/2. Recall that ‖·‖ was taken to be the 2-norm. In terms of
slopes,

amp(m) =
1
4

log
(m2 + (−1 +m)2

1 +m2

)
+

1
4

log
(m2 + (1 +m)2

1 +m2

)
=

1
4

log
( 1 + 4m4

(1 +m2)2

)
.

The figure below plots amp(m) vs m.

Furstenberg’s formula (2.1) can now be put in a concrete form using slopes to
parameterize directions x:

γf =
∫ ∞
−∞

amp(m) dνf (m) =
1
4

∫ ∞
−∞

log
( 1 + 4m4

(1 +m2)2

)
dνf (m).(2.3)

If we were to use a norm other than the 2-norm for vectors in the real plane, amp(m)
and amp(x) would be different functions. But Furstenberg’s formula (2.1) holds for
any norm, even though the measure νf is independent of the norm. Our choice of
the 2-norm is one of many equally suitable alternatives. For the weighted 2-norm

∥∥∥(a
b

)∥∥∥ =

√
a2 +

1 +
√

5
2

b2,

amp(m) > 0 for all m except m = ±
√

(
√

5− 1)/2, and amp(m) = 0 at those two
points.

To illustrate how (2.3) is used, we verify quickly that γf > 0. The invariance
condition (2.2) applied to the set [−∞,−1] ∪ [1,∞] implies νf

(
|m| ≥ 1) ≥ 1/2,

because the image of [1,∞] under m → 1/(−1 + m) and the image of [−∞,−1]
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under m→ 1/(1 +m) are [0,∞] and [−∞, 0], respectively. Now,

γf =
∫ ∞
−∞

amp(m) dνf (m)

> min
|m|<1

amp(m) νf
(
|m| < 1

)
+ min
|m|≥1

amp(m) νf
(
|m| ≥ 1

)
= −1

4
log
(5

4

)
νf
(
|m| < 1

)
+

1
4

log
(5

4

)
νf
(
|m| ≥ 1

)
≥ 0.

The first inequality above is strict, because νf must be continuous and amp(m)
is not a constant function. Minimizing amp(m) over |m| < 1 and |m| ≥ 1 is
basic calculus: the minima occur at the points m = ±1/2 and m = ±1. The
final ≥ is by νf

(
|m| ≥ 1

)
≥ 1/2. Actually, it will be shown in Section 3 that

νf
(
|m| ≥ 1

)
= (
√

5− 1)/2.

3. The Stern-Brocot tree

and construction of the invariant measure νf

Assuming ±1 /∈ (a, b) as before, we write down the invariance condition once
more for easy reference:

νf ([a, b]) =
1
2
νf

([ 1
−1 + b

,
1

−1 + a

])
+

1
2
νf

([ 1
1 + b

,
1

1 + a

])
.(3.1)

Our goal in this section is to find νf , the unique probability measure on the real
line R satisfying (3.1) for all intervals [a, b] not containing ±1. Since νf must be
continuous, it does not matter whether we take the intervals in (3.1) to be open or
closed or half-closed.

The construction of νf is based on the Stern-Brocot tree shown in Figure 3. The
Stern-Brocot tree is an infinite binary tree that divides R recursively. Represent∞

[−1
0 ,

1
0 ]

[−1
0 ,

0
1 ]

(((((((((
[0
1 ,

1
0 ]

hhhhhhhhh

[−1
0 ,
−1
1 ]

�����
[−1

1 ,
0
1 ]

PPPPP
[0
1 ,

1
1 ]

�����
[1
1 ,

1
0 ]

PPPPP

[−1
0 ,
−2
1 ]

�
��

[−2
1 ,
−1
1 ]

Q
QQ

[−1
1 ,
−1
2 ]

�
��

[−1
2 ,

0
1 ]

Q
QQ

[0
1 ,

1
2 ]

�
��

[1
2 ,

1
1 ]

Q
QQ

[1
1 ,

2
1 ]

�
��

[2
1 ,

1
0 ]

Q
QQ

[ 1
2 ,

2
3 ]

�
��

[2
3 ,

1
1 ]

Q
QQ

[ 2
3 ,

3
4 ]

�
��

[3
4 ,

1
1 ]

Q
QQ

Figure 3. The Stern-Brocot tree; its nodes are intervals of the
real line R. The division of any interval [ab ,

c
d ], except the root,

into two children is done by inserting the point a+c
b+d .
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as 1
0 and 0 as 0

1 , and write negative fractions with the numerator negative. Then
the root of the Stern-Brocot tree is the real line [−1

0 ,
1
0 ]. Its left and right children

are [−1
0 ,

0
1 ] and [0

1 ,
1
0 ], the positive and negative halves of R. The rest of the tree is

defined by dividing any node [ab ,
c
d ] other than the root into a left child [ab ,

a+c
b+d ] and

a right child [a+c
b+d ,

c
d ]. For example, the root’s left child [−1

0 ,
0
1 ] divides into [−1

0 ,
−1
1 ]

and [−1
1 ,

0
1 ].

The Stern-Brocot tree was discovered and reported independently by the math-
ematician Moriz Stern in 1858 [36] and by the watchmaker Achille Brocot in 1860
[10]. Unaware of its existence, we found it again while trying to construct νf . We
summarize some basic facts about it in Lemma 3.1. The Stern-Brocot tree and
its connections with continued fractions are discussed in detail by Graham, Knuth,
and Patashnik [20]. Their definition of the Stern-Brocot tree is slightly different
from ours. We adopt their notation a ⊥ b to say that integers a and b are relatively
prime.

Lemma 3.1. (a) The Stern-Brocot tree is symmetric about 0 with its right half
positive and its left half negative.

(b) If [ab ,
c
d ] is a node in the positive half of the Stern-Brocot tree, then bc−ad =

1, a ⊥ b, and c ⊥ d.
(c) Conversely, if a/b and c/d are non-negative rational numbers with zero and

infinity represented as 0
1 and 1

0 respectively, and bc− ad = 1 then [ab ,
c
d ] occurs as

a node in the Stern-Brocot tree. Consequently, every rational number a/b, a ⊥ b,
appears as an endpoint of a Stern-Brocot interval of finite depth.

Proof. (a) is obvious; see Figure 3. The proof of (b) is an easy induction on the
depth of the tree. (c) is a little bit less easy. Its proof is related to Euclid’s algorithm
for computing the greatest common divisor of two integers. See [20].

We adopt a labelling scheme for Stern-Brocot intervals (nodes of the Stern-
Brocot tree) that differs only a bit from that in [20]. The root [−1

0 ,
1
0 ] has the empty

label. Its left and right children [−1
0 ,

0
1 ] and [0

1 ,
1
0 ] are labelled l and r respectively.

The left child of l, [−1
0 ,
−1
1 ], is labelled lL. The right child of lL, [−2

1 ,
−1
1 ], is labelled

lLR, and so on. Only the first letter of a label is in lower case, because the division
of the root is special.

We use lα or rα to denote the labels of Stern-Brocot intervals other than the
root, with α being a possibly empty sequence of Ls and Rs. The sequence obtained
by changing α’s Ls to Rs and Rs to Ls is denoted ᾱ. For example, the reflection
of the positive interval rα about 0 is the negative interval lᾱ. The length of α is
denoted by |α|. We take the depth of lα or rα to be 1 + |α|.

Lemmas 3.2 and 3.3 express the maps m→ 1/m and m→ ±1+m succinctly for
Stern-Brocot intervals. They allow us to reduce the invariance requirement (3.1)
for Stern-Brocot intervals to an infinite system of linear equations (see (3.2)). That
reduction is the first step in constructing νf .

Lemma 3.2. The image of the interval [a/b, c/d] under the map m → 1/m —
which is [d/c, b/a] if 0 is not an interior point — is given by the following rules for
Stern-Brocot intervals:

lα→ lᾱ, rα→ rᾱ.

Proof. We give the proof for intervals of type rα using induction on the depth of
rα in the Stern-Brocot tree. The proof for intervals lα is similar.
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The base case r→ r is true because m ∈ [0,∞] if and only if 1/m ∈ [0,∞].
For the inductive case, note that [ab ,

c
d ], its left child [ab ,

a+c
b+d ], and its right child

[a+c
b+d ,

c
d ] are mapped by m→ 1/m to [dc ,

b
a ], its right child [ b+da+c ,

b
a ], and its left child

[dc ,
b+d
a+c ], respectively. Therefore, if rα→ rᾱ then rαL→ rᾱR and rαR → rᾱL.

Unlike the inversion operation m → 1/m in the previous lemma, both the op-
erations m → ±1 + m in the following lemma change the depth of Stern-Brocot
intervals.

Lemma 3.3. The image of Stern-Brocot intervals under the map m→ −1 +m is
given by the following rules:

lα→ lLα, rLα→ lRα, rRα→ rα.

Similarly, the image of Stern-Brocot intervals under the map m → 1 + m is given
by the following rules:

lLα→ lα, lRα→ rLα, rα→ rRα.

Proof. Similar to the previous proof. We will outline the proof for m→ 1+m only.
The base cases, adding 1 to the intervals lL, lR and r, are easy to check.
For the induction, we note that [ab ,

c
d ] is divided in the Stern-Brocot tree at the

point a+c
b+d , and its map under m → 1 + m, [1 + a

b , 1 + c
d ], is divided in the Stern-

Brocot tree at the point 1 + a+c
b+d . Thus [ab ,

c
d ], its left child, and its right child map

to [1 + a
b , 1 + c

d ], its left child, and its right child, respectively.

By Lemma 3.3, subtraction and addition of 1 to intervals in the Stern-Brocot
tree correspond to left and right rotation of the tree. Tree rotations are used to
implement balanced trees in computer science [13].

Thanks to Lemmas 3.2 and 3.3, the backward maps m → 1/(±1 + m) can be
performed on Stern-Brocot intervals easily. For example, 1/(1 + lLRL) = 1/lRL =
lLR. The invariance requirement (3.1) for Stern-Brocot intervals becomes an infi-
nite set of linear equations for νf (I), I being any Stern-Brocot interval:

νf (l) =
1
2
νf (lR) +

1
2

(νf (l) + νf (rR)),

νf (r) =
1
2

(νf (r) + νf (lL)) +
1
2
νf (rL),

νf (lLα) =
1
2
νf (lLLα) +

1
2
νf (lα),

νf (lRα) =
1
2
νf (lLRα) +

1
2
νf (rLα),

νf (rLα) =
1
2
νf (lRα) +

1
2
νf (rRLα),

νf (rRα) =
1
2
νf (rα) +

1
2
νf (rRRα).

(3.2)

We guessed the solution of (3.2). Even though the linear system (3.2) has
only rational coefficients, its solution involves

√
5, an irrational number! Let g =

(1 +
√

5)/2. Since νf is a probability measure, we require that νf ([−∞,∞]) = 1.
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Figure 4. (a), (b), (c) show the measure νf over directions in
R2. In these figures, the interval [0,∞] is divided into 23, 25,
and 28 Stern-Brocot intervals of the same depth, and then slopes
are converted to angles in the interval [0, π/2]. The area above
an interval gives its measure under νf . Because of symmetry, νf
in the directions [−π/2, 0] can be obtained by reflecting (a), (b)
and (c). Some of the spikes in (c) were cut off because they were
too tall. (d) is the distribution function for νf with directions
parameterized using angles.

The solution is:
νf (r) = 1/2,

νf (rαL) =

{
1

1+g νf (rα) if |α| is even,
g

1+g νf (rα) if |α| is odd,

νf (rαR) =

{
g

1+g νf (rα) if |α| is even,
1

1+g νf (rα) if |α| is odd,

νf (lα) = νf (rα).

(3.3)

For example, νf (r) = 1/2, νf (rL) = (1 + g)−1/2, νf (rLL) = g(1 + g)−2/2. Since
νf (lα) = νf (rᾱ) by (3.3), the measure νf is symmetric about 0. The same features
of νf repeat at finer and finer scales. See Figure 4.

Theorem 3.4. The measure νf defined by (3.3) satisfies the invariance require-
ment (3.1) for every Stern-Brocot interval. Further, with directions parameterized
by slopes, νf defined by (3.3) gives the unique µf -invariant probability measure over
directions in the real plane R2.
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Proof. To show that νf is µf -invariant, it is enough to show that νf satisfies the
invariance conditions (3.2) for Stern-Brocot intervals. The reason is that νf is
obviously a continuous measure, every rational appears in the Stern-Brocot tree at
a finite depth by Lemma 3.1c, and the rationals are dense in R. For the uniqueness
of νf , see [7, p. 31].

It is enough to prove the invariance condition for positive intervals rα. The
validity of the invariance condition for negative Stern-Brocot intervals follows from
symmetry. Assume the invariance condition for the interval rLα:

νf (rLα) =
1
2
νf (lRα) +

1
2
νf (rRLα).

Then the invariance condition for rLαL,

νf (rLαL) =
1
2
νf (lRαR) +

1
2
νf (rRLαR),

is also true, because the three fractions

νf (rLαL)
νf (rLα)

,
νf (lRαR)
νf (lRα)

,
νf (rRLαR)
νf (rRLα)

are all either g/(1 + g) or 1/(1 + g) according as |α| is even or odd. By a similar ar-
gument, if the invariance condition (3.2) holds for all positive Stern-Brocot intervals
at depth d ≥ 2, then the invariance condition holds for all positive Stern-Brocot
intervals at depth d+ 1.

Therefore, it suffices to verify (3.2) for r, rL, and rR. For r, (3.2) requires
1
2

=
1
2

(
1
2

+
1

2(1 + g)
) +

1
2

(
g

2(1 + g)
),

which is obviously true. For rL, (3.2) requires,
1

2(1 + g)
=

g

4(1 + g)
+

1
4(1 + g)2

,

which is true because g = (1 +
√

5)/2. The invariance condition for rR can be
verified similarly. Thus the invariance condition (3.2) holds for all Stern-Brocot
intervals, and we can say that νf is the unique µf -invariant probability measure.

Because of symmetry, the measure νf over slopes given by (3.3) is invariant
even for the distribution that picks one of

(
0 1
±1 ±1

)
with probability 1/4. Moreover,

Furstenberg’s integral for the Lyapunov exponent γ of this distribution is also given
by (2.3).

According to historical remarks in [11], measures similar to νf have been studied
by Denjoy, Minkowski, and de Rham. But is νf a fractal? To make this precise,
we need the definition

dim(νf ) = inf{dim(S)
∣∣νf is supported on S},

where dim(S) is the Hausdorff dimension of S ⊂ R. To show that νf is a fractal,
it is necessary to prove that 0 < dim(νf ) < 1. It is known that 0 < dim(νf ) [7, p.
162]. David Allwright of Oxford University has shown us a short proof that νf is
singular with respect to the Lebesgue measure; Allwright’s proof relies on Theorems
30 and 31 of Khintchine [25]. The Hausdorff dimensions of very similar measures
have been determined by Kinney and Pitcher [27]. We also note that Ledrappier
has conjectured a formula for dim(νf ) [30] [7, p. 162].
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For some distributions supported on 2-dimensional matrices with non-negative
entries, the infinite linear system analogous to (3.2) is triangular, or in other words,
the invariance requirement for a Stern-Brocot interval involves only intervals at a
lesser depth. For a typical example, choose

(
1 1
1 0

)
with probability p, 0 < p < 1, and(

0 1
1 1

)
with probability 1−p. In this example, the invariant measure over directions

parameterized by slopes is supported on [0,∞], the slope m is mapped to 1/(1+m)
and 1 + 1/m respectively, and the ranges of those two maps ([0, 1] and [1,∞])
are disjoint. Chassaing, Letac and Mora [11] have found the invariant measure
for several 2-dimensional random matrix products that fit into this framework.
All their matrices have non-negative entries. Moreover, since the linear systems
for finding the invariant measure are triangular for all the examples in [11], the
solution can have irrational numbers only if the original problem does.

The techniques described in this section can be used to find the invariant measure
corresponding to the random recurrence tn = αtn−1 +tn−2 if α is distributed on the
positive integers. But this situation was already covered in [11]. When the random
variable α takes both positive and negative values, random Fibonacci recurrence
is the only example we know where the technique of using Stern-Brocot intervals
for finding the invariant measure can be made to work. Numerical results about a
generalization of the random Fibonacci sequences where α takes both positive and
negative values are given in [16].

4. eγf = 1.13198824 . . .

Furstenberg’s integral for γf (2.3) can be written as

γf = 2
∫ ∞

0

1
4

log
( 1 + 4m4

(1 +m2)2

)
dνf (m)

because both the integrand and νf are symmetric about 0. In this section, we use
this formula to compute γf with the help of a computer. Thus the determination of
eγf to be 1.13198824 . . . is computer assisted. We will explain later why we report
this result as a theorem (Theorem 4.2), even though it is computer assisted.

Let Idj , 1 ≤ j ≤ 2d, be the 2d positive Stern-Brocot intervals at depth d + 1.
Then,

pd = 2
2d∑
j=1

min
m∈Idj

amp(m) νf (Idj ) < γf < qd = 2
2d∑
j=1

max
m∈Idj

amp(m) νf (Idj ).(4.1)

The inequalities above are strict because amp(m) is not constant, and νf is con-
tinuous. Also, (4.1) defines pd and qd. Since γf is trapped in the intervals (pd, qd),
and the interval length |qd − pd| shrinks to 0 as d increases, we can find γf to any
desired accuracy by computing pd and qd for large enough d.

We computed pd and qd with d = 28 on a computer using IEEE double precision
arithmetic (the C program used is described in the appendix). Computations in
floating point arithmetic are not exact, but when done carefully, give an answer that
is close to the exact answer. If fl(e) denotes the number obtained by evaluating the
expression e in floating point arithmetic, fl(e) depends both on the type of floating
point arithmetic used and the algorithm used to evaluate e. Our computations using
IEEE double precision arithmetic [24] and an algorithm described in the appendix
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gave

fl(p28) = 0.1239755981508, fl(q28) = 0.1239755994406.(4.2)

In hexadecimal code, the 64 bits of fl(pd) and fl(qd) in IEEE double precision format
are 3fbfbcdd638f4d87 and 3fbfbcdd6919756d, respectively. The appendix will explain
the way to reproduce our computation to get exactly these two numbers. We will
now upper bound the errors |fl(p28) − p28| and |fl(q28) − q28| to realize our aim of
obtaining bounds for γf from (4.2).

IEEE double precision arithmetic (defined by the standard IEEE-754 [24]) can
represent all real numbers of binary form (−1)sb0.b1 . . . b52 2e−1023 exactly. Here,
b0 = 1, the bits b1 to b52 can be 1 or 0, the sign bit s can be 1 or 0, and the
biased exponent e can be any integer in the range 0 < e < 2047. The number
0 can also be represented exactly. In fact, the values e = 0 and e = 2047 are
used to implement special features that we do not describe. From here on, floating
point arithmetic always refers to IEEE double precision arithmetic, and floating
point number refers to a number in that arithmetic. Thus if a is a real number
in the range [2−1022, (1 + 2−1 + · · · + 2−52)21023], a can be represented such that
fl(a) = a(1 + E) with the relative error E satisfying |E| < 2−52 [22, p. 42].

The IEEE standard treats +,−,×,÷,√ as basic operations. The basic opera-
tions cannot always be performed exactly. For example, the sum of two floating
point numbers may not have an exact floating point representation. However, all
these basic operations are performed as if an intermediate result correct to infi-
nite precision is coerced into a representable number by rounding. We assume the
“round to nearest” mode, which is the default type of rounding. Thus, if a and b
are floating point numbers,

fl(a+ b) = (a+ b)(1 +E),

fl(a− b) = (a− b)(1 +E),

fl(a/b) = (a/b)(1 +E),

fl(a× b) = (a× b)(1 +E),

fl(
√
a) = (

√
a)(1 +E),

(4.3)

where the relative error E may depend upon a, b, and the operation performed,
but |E| < 2−52. For convenience, we denote 2−52 by u.1 For (4.3) to be valid,
however, the operation should not overflow and produce a number that is too big
to be represented, or underflow and produce a number that is too small to be
represented.

The C program we give in the appendix uses a function tlog(x) to compute
log x. This becomes necessary because log is not a basic operation in the IEEE
standard. However, tlog() is implemented so that

fl(log a) = log a(1 + E)(4.4)

with |E| < u whenever a is a positive floating point number. For the clever ideas
that go into tlog() and the error analysis, see the original paper by Tang [38].

The proof of the following lemma is given in the appendix.

1 The bounds on |E| can be taken as 2−53 [22, p. 42], but with the current choice the relative
error of Tang’s log function (see (4.4)) has the same bound as that of the basic operations.
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Lemma 4.1. Assume that (4.3) and (4.4) hold with 0 < u < 1/10 for the floating
point arithmetic used. Then for the algorithm to compute the sums pd and qd
described in the appendix,

|fl(pd)− pd| <
log 4

4
(eu(d+1) − 1) +

33
4
ueu(d+1),

|fl(qd)− qd| <
log 4

4
(eu(d+1) − 1) +

33
4
ueu(d+1).

It is easy, though a bit tedious, to show that the discretization error |pd − qd| is
O(1/2d). By Lemma 4.1, the rounding errors in computing pd and qd are roughly
a small multiple of u. Thus to compute γf with an absolute error of ε, the depth of
the calculation has to be about − log2 ε and the unit roundoff of the floating point
arithmetic has to be at least as small as ε.

In the theorem below, by 1.13198824 . . . we mean a number in the interval
[1.13198824, 1.13198825).

Theorem 4.2. (a) The constant γf lies in the interval

(0.1239755980, 0.1239755995).

(b) eγf = 1.13198824 . . . .
(c) As n→∞,

n
√
|tn| → 1.13198824 . . .

with probability 1.

Proof. In the computation leading to fl(p28) and fl(q28), there are no overflows
or underflows, and hence (4.3) and (4.4) are always true. Therefore, we can use
u = 2−52 and d = 28 in Lemma 4.1 to get

|fl(p28)− p28| < 10−14, |fl(q28)− q28| < 10−14.

Now the values of fl(p28) and fl(q28) in (4.2) imply (a). (b) is implied by (a). In
fact, we can also say that the digit of eγf after the last 4 in (b) must be an 8 or a
9. (c) follows from earlier remarks.

Theorem 4.2 above is the main result of this paper. We arrived at Theorem
4.2 using Lemma 4.1 and rounding error analysis. An alternative is to use interval
arithmetic to validate the computation [1]. Instead of rounding the computations to
the nearest floating point number, interval arithmetic carefully rounds the various
stages of the computation either upwards or downwards to compute a lower bound
for pd and an upper bound for qd. As a result, were we to use interval arithmetic
there would be no need for rounding error analysis. A disadvantage would be that
the manipulation of rounding modes necessary for implementing interval arithmetic
would make it significantly more expensive on most computers. Our approach
exposes the ideas behind floating point arithmetic and shows that floating point
arithmetic is rigorous too. Besides, the rounding error analysis as summarized by
Lemma 4.1 gives a clear idea of the error due to rounding. This tells us, for example,
that the rounding errors |fl(p28)− p28| and |fl(q28)− q28|, which are both less than
10−14, are much smaller than the discretization error |p28 − q28|, which is about
10−8.
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Figure 5. The Lyapunov exponent γf (p) vs. p. To obtain the
curve above, γf (p) was determined by numerically approximating
the correct invariant distribution for 199 values of p, equally spaced
in (0, 1). Each γf (p) is accurate to 5 decimal digits. For a descrip-
tion of the numerical method, sometimes called Ulam’s method,
see [16] or [23].

Since the proof of Theorem 4.2 relies on a computer calculation, the validity of
the proof requires some comment. The construction of νf in Section 2, the program
and the rounding error analysis given in the appendix can all be checked line by
line. However, Theorem 4.2 still assumes the correct implementation of various
software and hardware components including the standard IEEE–754. We did the
computation on two entirely different systems — SUN’s Sparc server 670 MP, and
Intel’s i686 with the Linux operating system. In both cases, the results were exactly
the same as given in (4.2); the hex codes for fl(pd) and fl(qd) matched the hex codes
given below (4.2). As it is very unlikely that two systems with such different
architectures may have the same bug, we feel that the correctness of Theorem 4.2
should, at worst, be doubted no more than that of tedious and intricate proofs that
can be checked line by line. Though the use of floating point arithmetic to prove
a theorem may be unusual, the proof of Theorem 4.2 is only as dependent on the
correctness of the computer system as, say, the proof of the four-color theorem; in
other words, assuming the implementation of IEEE arithmetic to be correct is just
like assuming the implementation of a memory-to-register copy instruction to be
correct.

Besides, all components of a computer system, like mathematical proofs, can be
checked in careful line by line detail, and this is done many times during and after
their implementation. However, experience has shown that some bugs can defy even
the most careful scrutiny. A great deal of research has gone into developing systems
to verify that hardware and software implementations meet their specification [12].

In recent work, Tsitsiklis and Blondel [39] claim that the upper Lyapunov ex-
ponent is not “algorithmically approximable.” They prove that there can be no
Turing machine which accepts a pair of matrices as input and returns an approxi-
mation to the upper Lyapunov exponent with bounded error. The distribution can
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be anything which picks both the input matrices with nonzero probability and no
others. This uncomputability result holds when the dimension of the matrices is
48 or greater.

To interpret this result properly, we think that it must be compared with similar
results for easier analytic problems like computing eigenvalues of matrices and zeros
of polynomials. For literature on similar analytic problems, we refer to [6]; but the
model of computation used in that book is not the Turing model. In another sense
the result of Tsitsiklis and Blondel is limited. It applies only when the class of
problems includes distributions with singular matrices. But most of the theory of
random matrix products has been developed for distributions supported on non-
singular matrices. When the distribution is supported on nonsingular matrices, we
give an algorithm for computing the top Lyapunov exponent with an arbitrarily
small absolute error in [41]. For this algorithm to be effective, a mild irreducibility
assumption about the support of the distribution has to hold.

To conclude, we ask: Is there a short analytic description of γf? The fractal
quality of γf suggests no. But let γf (p) be the Lyapunov exponent of the obvious
generalization t1 = t2 = 1, and for n ≥ 2, tn = ±tn−1 ± tn−2 with each ± sign
independent and either + with probability p or − with probability 1− p. Unfortu-
nately, the techniques described in this paper for γf (1/2) do not seem to generalize
easily to γf (p), 0 < p < 1. A beautiful result of Peres [35] implies that γf (p) is a
real analytic function of p. See Figure 5. The analyticity of γf (p) vs. p seems to
increase the possibility that there might be a short analytic description of γf .

Appendix. Rounding error analysis

The main steps in the computation of pd and qd are the computation of νf (Idj ),
where Idj , 1 ≤ j ≤ 2d, are the 2d positive Stern-Brocot intervals of depth d + 1;
the minimization and maximization of amp(m) over Idj ; and the summation over
1 ≤ j ≤ 2d as in the defining equation (4.1). We describe some aspects of the
computation and then give a rounding error analysis to prove Lemma 4.1. A C
program for computing pd and qd for d = 28 is given at the end of this section so
that our computation can be reproduced; its perusal in not necessary for reading
this section.

Lemma 3.2 implies that the denominators of the 2d positive Stern-Brocot inter-
vals of depth d + 1 occur in an order that is the reverse of the order of the nu-
merators. For example, the positive Stern-Brocot intervals of depth 4 are defined
by divisions at the points 0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,

1
0 , the numerators for that depth

occur in the order 0, 1, 1, 2, 1, 3, 2, 3, 1, and the denominators occur in the reverse
order 1, 3, 2, 3, 1, 2, 1, 1, 0. We use this fact to avoid storing the denominators of the
Stern-Brocot divisions. The numerators are stored in the array num[] by the C
program.

To compute pd and qd, we use (4.1) in the following form:

pd =
2d∑
j=1

min
m∈Idj

(
log

1 + 4m4

(1 +m2)2

)νf (Idj )
2

,

qd =
2d∑
j=1

max
m∈Idj

(
log

1 + 4m4

(1 +m2)2

)νf (Idj )
2

.

(A.1)
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By (3.3), νf (Idj )/2 is one of the d + 1 numbers gd−i(1 + g)−d/4, 0 ≤ i ≤ d, where
g = (1 +

√
5)/2. The array table[] in the C program is initialized after precom-

puting these d + 1 numbers to very high accuracy in the symbolic algebra system
Mathematica so that table[i]= (gd−i(1 + g)−d/4)(1 + E) with the relative error
E satisfying |E| < u. The index i into table[] for getting νf (Idj )/2 is obtained
by taking the binary representation of j, flipping all the odd bits if d is even and
all the even bits if d is odd with the least significant bit taken as an even bit, and
then counting the number of 1s; correctness of this procedure can be proved easily
using induction.

The minimization and the maximization of 4 amp(m) over Idj in (A.1) are easy
to do. Since amp(m) has its only local minimum for m ≥ 0 at m = 1/2 (see the
figure just after (2.2)), both the minimum and the maximum are at the endpoints
of Idj .

The summations in (A.1) are performed pairwise, not left to right. The pairwise
summation of 2d numbers is done by dividing the 2d numbers into 2d−1 pairs of
adjacent numbers, adding each pair to get 2d−1 numbers, and then reducing the
2d−1 numbers to 2d−2 numbers similarly, and so on until a single number is obtained.
Rounding error analysis leads to smaller upper bounds on |fl(pd)−pd| and |fl(qd)−qd|
for pairwise summation than for term-by-term left to right summation [22, p. 92].
The bounds for left to right summation are not small enough to give eγf correctly
to the 8 decimal digits shown in Theorem 4.2.

Lemmas A.1 and A.2 help simplify the proof of Lemma 4.1.

Lemma A.1. Assume 0 < f1(u) < 1 + e1 < g1(u) and 0 < f2(u) < 1 + e2 < g2(u).
(a) If a > 0, b > 0, and a(1+e1)+b(1+e2) = (a+b)(1+E), then min(f1(u), f2(u))

< 1 + E < max(g1(u), g2(u)).
(b) If 1 + E = (1 + e1)(1 + e2), then f1(u)f2(u) < 1 + E < g1(u)g2(u).
(c) If 1 + E = (1 + e1)/(1 + e2), then f1(u)/g2(u) < 1 + E < g1(u)/f2(u).

Proof. To prove (a), note that 1 +E is the weighted mean of 1 + e1 and 1 + e2. (b)
and (c) are trivial.

Consider the computation fl(m2):

fl(m2) = fl(m) fl(m)(1 + e′) = m2(1 + e′)(1 + e′′)2,

where e′′ is the relative error in representing m, and e′ is the relative error caused
by rounding the multiplication. By (4.3) and remarks in the paragraph preceding
it, 1−u < 1 + e′, 1 + e′′ < 1 +u. Lemma A.1b allows us to gather the factors 1 + e′

and (1 + e′′)2 together and write

fl(m2) = m2(1 + e0),(A.2)

with (1− u)3 < 1 + E < (1 + u)3.
Consider the computation fl(1 +m2):

fl(1 + m2) = (1 + fl(m2))(1 + e′′′) = (1 +m2(1 + e′)(1 + e′′)2)(1 + e′′′),

where e′′′ is the relative error in the addition 1 +m2, and e′′, e′ are, as before, the
relative errors in representing m and the multiplication m×m, respectively. As it
was with 1 + e′ and 1 + e′′, 1−u < 1 + e′′′ < 1 +u by (4.3), and we can use Lemma
A.1a to pull (1 + e′)(1 + e′′)2 out of the sum 1 +m2, and Lemma A.1b to multiply
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(1 + e′)(1 + e′′)2(1 + e′′′) to get

fl(1 +m2) = (1 +m2)(1 + e′0),(A.3)

with (1− u)4 < 1 + e′0 < (1 + u)4.
Thus Lemma A.1 allows us to pull factors like (1+ei) out of sums (Lemma A.1a),

or to multiply them together (Lemma A.1b), or to divide between them (Lemma
A.1c). Rounding error analyses of simple computations, like the analyses of fl(m2)
and fl(1 + m2) given above, feature three steps. First, relative errors ei caused
by rounding are assigned to all the basic operations. Second, 1 + ei are bounded
using (4.3) or (4.4). Third, factors like (1 + ei) are gathered together using Lemma
A.1. In the proof of Lemma 4.1, we always spell out the first step in detail, but
sometimes omit details for the second and third steps.

The inequalities in Lemma A.2 below are used in the proof of Lemma 4.1.

Lemma A.2. (a) If 0 < u < 1/4, then log 1+u
1−u < 3u.

(b) (1 + α)d < eαd for α > 0 and d a positive integer.

Proof. It is easy to prove (a) by expanding log((1 + u)/(1 − u)) in a series. (b)
can be proved by comparing the binomial expansion of (1 + α)d with the series
expansion of eαd.

The summations in the proof below are all over 1 ≤ j ≤ 2d.

Proof of Lemma 4.1. We will prove the upper bound only for |fl(pd) − pd|. The
proof for |fl(qd)− qd| is similar.

First, consider the computation of 4 amp(m) = log 1+4m4

(1+m2)2 :

fl
(

log
1 + 4m4

(1 +m2)2

)
= log

((1 + 4m4(1 + e0)2(1 + e1)(1 + e2))(1 + e3)
(1 +m2)2(1 + e′0)2(1 + e4)

(1 + e5)
)

(1 + e6),

where e0 and e′0 are the relative errors in fl(m2) and fl(1+m2) as in (A.2) and (A.3)
respectively, e1, e2 are the relative errors of the two multiplications (4×m2)×m2,
e3 of the addition 1 + 4m4, e4 of the multiplication (1 +m2)× (1 +m2), e5 of the
division (1 + 4m4)/(1 +m2)2, and e6 of taking the log. By assumptions (4.3) and
(4.4), 1− u < 1 + ei < 1 + u for 1 ≤ i ≤ 6. Lemma A.1 gives

fl
(

log
1 + 4m4

(1 +m2)2

)
=
(

log
1 + 4m4

(1 +m2)2

)
(1 + E1) + E2,(A.4)

with 1− u < 1 +E1 < 1 + u and |E2| < (1 + u) log((1 + u)10(1− u)−9). A weaker,
but simpler, bound is |E2| < 10(1 + u) log((1 + u)/(1 − u)). Now, the assumption
u < 1/10 implies 10(1 + u) < 11, which, together with Lemma A.2b, gives the
simple bound |E2| < 33u.

Second, recall that νf (Idj )/2 is obtained by precomputing gd−i(1 + g)−d/4 to
high precision. Therefore

fl(νf (Idj )/2) =
νf (Idj )

2
(1 + E3),(A.5)

with |E3| < u.
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Finally, consider the pairwise summation to compute pd. Let mj be the endpoint
of Idj where amp(m) is minimum. Then,

fl(pd) =
∑(

log
1 + 4m4

j

(1 +m2
j)2

(1 + Ej1) + Ej2

)(νf (Idj )
2

(1 + Ej3)
)

(1 + Ej4)

where Ej1 and Ej2 are the relative errors in computing log((1 + 4m4
j)(1 + m2

j )
−2),

and therefore are bounded like E1 and E2 in (A.4); Ej3 is the relative error in
computing νf (Idj )/2 and is bounded like E3 in (A.5); and the factors 1 + Ej4 take
up the errors in the pairwise summation. By Higham [22, p. 91], Ej4 can be chosen
so that (1 − u)d < 1 + Ej4 < (1 + u)d. Lemma A.1 gives

fl(pd) =
1
2

∑
log

1 + 4m4
j

(1 +m2
j)2

νf (Idj )(1 +Eja) +
1
2

∑
νf (Idj )Ejb(A.6)

with (1− u)d+2 < 1 + Eja < (1 + u)d+2 and |Ejb | < 33u(1 + u)d+1.
Bounding |fl(pd)− pd| is now a simple matter:

|fl(pd)− pd| <
1
2

∑∣∣log
1 + 4m4

j

(1 +m2
j )2

∣∣νf (Idj )|Eja − 1|+ 1
2

∑
νf (Idj )|Ejb |

<
log 4

4
((1 + u)d+2 − 1) +

33
4
u(1 + u)d+1

<
log 4

4
(eu(d+2) − 1) +

33
4
ueu(d+1).

The second inequality above uses
∑
νf (Idj ) = 1/2, |log 1+4m4

(1+m2)2 | < log 4, |Eja − 1| <
(1 + u)d+2 − 1, and |Ejb | < 33u(1 + u)d+1. The bound on |Eja − 1| can be derived
easily from (1 − u)d+2 < 1 + Eja < (1 + u)d+2. The final inequality follows from
Lemma A.2b.

Upper bounding |fl(qd)−qd| involves a small, additional detail. For the rightmost
positive Stern-Brocot interval Idj , amp(m) is maximum at m =∞. This causes no
difficulty, however, because log((1 + 4m4)/(1 + m2)2) is taken as log 4 at m = ∞
by the computation, and as a result, the bounds in (A.4) still hold.

A program to compute pd and qd is given below so that the computation leading
to (4.2) can be easily reproduced. The program uses up 1.1 gigabytes of memory. It
can be written using only a small amount of memory, but then it would be harder
to read. For finding logs, we used the version of Tang’s algorithm [38] that does
not precompute and store 1/F for F = 1 + j2−7, 0 ≤ j ≤ 128. Though we do not
give the code here because it is machine dependent, the guidelines given in [38] are
enough to reproduce that log function (called tlog() in the program) exactly.
#include <stdlib.h>
#include <stdio.h>
#define D 28
#define N 268435456
#define NRT 16384
unsigned int filter = 0xAAAAAAA;

#define bitcount(x,b) \
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{b = 0; \
for( ; x!=0; x&=(x-1)) \
b++; \

}
double tlog(double);
double sum(double *, int);

static double table[D+1] = {
3.51792099313013395856e-7,
2.17419474349120812252e-7,
1.34372624963892583604e-7,
8.30468493852282286483e-8,
5.13257755786643549553e-8,
3.17210738065638736930e-8,
1.96047017721004812623e-8,
1.21163720344633924307e-8,
7.48832973763708883155e-9,
4.62804229682630359918e-9,
2.86028744081078523237e-9,
1.76775485601551836682e-9,
1.09253258479526686555e-9,
6.75222271220251501272e-10,
4.17310313575015364275e-10,
2.57911957645236136997e-10,
1.59398355929779227278e-10,
9.85136017154569097184e-11,
6.08847542143223175599e-11,
3.76288475011345921584e-11,
2.32559067131877254014e-11,
1.43729407879468667570e-11,
8.88296592524085864439e-12,
5.48997486270600811265e-12,
3.39299106253485053174e-12,
2.09698380017115758091e-12,
1.29600726236369295083e-12,
8.00976537807464630088e-13,
4.95030724556228320737e-13};

void main()
{
int i,j,*num;
double lower,upper,larray1[NRT],larray2[NRT],

uarray1[NRT],uarray2[NRT];
unsigned int *lptr, *uptr;

num = (int *)malloc(sizeof(int)*(N+1));
num[0] = 1; num[1]=1;
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for(i=2;i<N;i=i+2){
num[i] = num[i/2];
num[i+1] = num[i/2]+num[i/2+1];}

num[N] = 1;

for(i=0; i<NRT; i++){
unsigned int k,b,x; double m, m2, m2p1,

left, right, measure;

k = i*NRT; m =(double)num[k]/(double)num[N-k];
m2 = m*m; m2p1 = m2+ 1.0;
left = tlog((1+4*m2*m2)/(m2p1*m2p1));

if (i < NRT/4)
for(j=0; j<NRT; j++){
k = i*NRT+j;
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m*m;
m2p1 = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));
x = k^filter;
bitcount(x,b);
measure = table[b];
larray1[j] = measure*right; uarray1[j] = measure*left;
left = right;}

else if(i < NRT-1)
for(j=0;j<NRT;j++){
k = i*NRT+j;
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m*m;
m2p1 = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));
x = k^filter;
bitcount(x,b);
measure = table[b];
larray1[j] = measure*left; uarray1[j] = measure*right;
left = right;}

else /* i == NRT-1 */
for(j=0; j<NRT;j++){
k = i*NRT+j;
if(j==NRT-1)
right = tlog(4.0);

else{
m = (double)num[k+1]/(double)num[N-k-1];
m2 = m*m;
m2p1 = 1 + m2;
right = tlog((1+4*m2*m2)/(m2p1*m2p1));}

x = k^filter;
bitcount(x,b);

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824 . . . 1153

measure = table[b];
larray1[j] = measure*left; uarray1[j] = measure*right;
left = right;}

larray2[i] = sum(larray1,NRT); uarray2[i] = sum(uarray1,NRT);}

lower = sum(larray2,NRT);
upper = sum(uarray2,NRT);

lptr = (unsigned int *)(&lower);
uptr = (unsigned int *)(&upper);
printf("(l,r)= (%.17E, %.17E)\n",lower, upper);
printf("(l,u) in hex = (%x %x, %x %x)\n",*lptr,*(lptr+1),*uptr,

*(uptr+1));
}

/* sums a list, length being a power of 2 */
double sum(double *list, int length)
{
int i,step;

for(step = 1; step < length; step = 2*step)
for(i=0; i < length; i += 2*step)

list[i]+= list[i+step];

return list[0];
}
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