Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Computing the tame kernel of quadratic imaginary fields

Authors: Jerzy Browkin, with an appendix by Karim Belabas and Herbert Gangl
Journal: Math. Comp. 69 (2000), 1667-1683
MSC (1991): Primary 19C20; Secondary 11R11, 11R70, 11Y40
Published electronically: March 15, 2000
MathSciNet review: 1681124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: J. Tate has determined the group $K_{2}\mathcal{O}_{F}$ (called the tame kernel) for six quadratic imaginary number fields $F=\mathbb{Q} (\sqrt {d}),$where $d=-3,-4,-7, -8,-11,$ $-15.$ Modifying the method of Tate, H. Qin has done the same for $d=-24$ and $d=-35,$ and M. Ska\lba for $d=-19$ and $d=-20.$

In the present paper we discuss the methods of Qin and Ska\lba, and we apply our results to the field $\mathbb{Q} (\sqrt {-23}).$

In the Appendix at the end of the paper K. Belabas and H. Gangl present the results of their computation of $K_{2}\mathcal{O}_{F}$ for some other values of $d.$The results agree with the conjectural structure of $K_{2}\mathcal{O}_{F}$ given in the paper by Browkin and Gangl.

References [Enhancements On Off] (What's this?)

  • [A1] S. Arno, The imaginary quadratic fields of class number $4$, Acta Arith. 60 (1992), 321-334.MR 93b:11144
  • [A2] S. Arno, M.L. Robinson, F.S. Wheeler, The imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998), 295-330. MR 99a:11123
  • [BBCO] C. Batut, D. Bernardi, H. Cohen, M. Olivier, GP/PARI Calculator, version 1.39.
  • [KH] K. Belabas, H. Gangl, Generators and relations for $K_2{\mathcal O}_F $, $F$ imaginary quadratic, in preparation.
  • [BG] J. Browkin, H. Gangl, Tame and wild kernels of quadratic imaginary number fields, Math. Comp. 68 (1999) 291-305. MR 99c:11144
  • [BS] J. Browkin, A. Schinzel, On Sylow $2$-subgroups of $K_2{\mathcal O}_F $ for quadratic number fields $F$, J. Reine Angew. Math. 331 (1982), 104-113.MR 83g:12011
  • [C] Harvey Cohn, Advanced Number Theory, Dover Publications, New York, 1962.MR 82b:12001
  • [Q1] H. Qin, Computation of $K_{2}{\mathbb Z}[\sqrt {-6}]$, J. Pure Appl. Algebra 96 (1994), 133-146.MR 95i:11135
  • [Q2] -, Computation of $K_{2}{\mathbb Z}\big [\frac{1+\sqrt {-35}}{2}\big ]$, Chin. Ann. Math. 17B (1) (1996), 63-72. MR 97a:19004
  • [Q3] -, Tame kernels and Tate kernels of quadratic number fields, preprint, 1998.
  • [S] M. Ska\lba, Generalization of Thue's theorem and computation of the group $K_2{\mathcal O}_F$, J. Number Theory 46 (1994), 303-322.MR 95d:19001
  • [T] J. Tate, Appendix, Lecture Notes in Math., Vol. 342, Springer Verlag, New York/Berlin, 1973, pp. 429-446. MR 48:3656b
  • [W] C. Wagner, Class number $5,6$ and $7$, Math. Comp. 65 (1996), 785-800. MR 96g:11135

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 19C20, 11R11, 11R70, 11Y40

Retrieve articles in all journals with MSC (1991): 19C20, 11R11, 11R70, 11Y40

Additional Information

Jerzy Browkin
Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL-02-097 Warsaw, Poland

with an appendix by Karim Belabas
Affiliation: Dept. de Mathématiques, Bât. 425, Université Paris-Sud, F-91405 Orsay, France

Herbert Gangl
Affiliation: Max-Planck Institut für Mathematik, Vivatsgaße 7, D-53111, Bonn, Germany

Keywords: Tame kernel, quadratic imaginary fields, Thue's theorem
Received by editor(s): January 14, 1998
Received by editor(s) in revised form: December 7, 1998
Published electronically: March 15, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society