An additive Schwarz method

for variational inequalities

Authors:
Lori Badea and Junping Wang

Journal:
Math. Comp. **69** (2000), 1341-1354

MSC (1991):
Primary 65K10, 65J99, 35R35, 35J60, 49D27, 49D37

DOI:
https://doi.org/10.1090/S0025-5718-99-01164-3

Published electronically:
May 20, 1999

MathSciNet review:
1665946

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper proposes an additive Schwarz method for variational inequalities and their approximations by finite element methods. The Schwarz domain decomposition method is proved to converge with a geometric rate depending on the decomposition of the domain. The result is based on an abstract framework of convergence analysis established for general variational inequalities in Hilbert spaces.

**1.**L. Badea,*A generalization of the Schwarz alternating method to an arbitrary number of subdomains*, Numer. Math.,*55*(1989), pp. 61-81. MR**90e:65150****2.**L. Badea,*On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems*, SIAM J. Numer. Anal., 28 (1991), pp. 1-99. MR**91m:65165****3.**J. Bramble, J. Pasciak, J. Wang and J. Xu,*Convergence estimates for product iterative methods with applications to domain decomposition*, Math. Comp., 57 (1991), pp. 1-99. MR**92d:65094****4.**T. Chan, T. Hou and P. L. Lions,*Geometry related convergence results for domain decomposition algorithms*, SIAM J. Numer. Anal., 28 (1991), pp. 1-99. MR**92a:65325****5.**M. Dryja,*An additive Schwarz algorithm for two- and three-dimensional finite element elliptic problems*, in T. Chan et al., eds., Domain Decomposition Methods, Philadelphia, 1989, SIAM, pp. 168-172. MR**89j:65010****6.**M. Dryja and O. Widlund,*Some domain decomposition algorithms for elliptic problems*, in L. Hayes and D. Kincaid, eds., Iterative Methods for Large Systems, Boston, 1990, Academic Press, pp. 273-291. MR**91f:65071****7.**M. Dryja and O. Widlund,*Towards a unified theory of domain decomposition algorithms for elliptic problems*, in T. Chan et al., eds., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, 1990, SIAM, pp. 3-21. MR**91m:65294****8.**K. H. Hoffmann and J. Zou,*Parallel algorithms of Schwarz variant for variational inequalities*, Numer. Funct. Anal. Optim., 13 (1992), pp. 1-99. MR**93k:65050****9.**R. Kornhuber,*Monotone multigrid methods for elliptic variational inequalities*I, Numer. Math., 69 (1994), pp. 1-99. MR**96d:65201****10.**Y. Kuznetsov and P. Neittaanmäki,*Overlapping domain decomposition methods for the simplified Dirichlet-Signorini problem*, in W. Ames and P. van der Houwen, eds., Computational and Applied Mathematics II, Amsterdam, 1992, pp. 297-306. MR**94c:65139****11.**Y. Kuznetsov, P. Neittaanmäki and P. Tarvainen*Block relaxation methods for algebraic obstacle problem with M-matrices*, East-West J. Numer. Math., 2 (1994), pp. 1-99. MR**95d:65029****12.**Y. Kuznetsov, P. Neittaanmäki and P. Tarvainen*Overlapping domain decomposition methods for the obstacle problem*, in Y. Kuznetsov et al., eds., Domain Decomposition Methods in Science and Engineering, AMS, Philadelphia, 1994, pp. 271-277. MR**94i:65004****13.**J. Mandel,*A multilevel iterative method for symmetric, positive definite linear complementarity problems*, Appl. Math. Optimization, 11 (1984), pp. 1-99. MR**85b:90082****14.**P. L. Lions,*On the Schwarz alternating method I*, in R. Glowinski et al., eds., First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, 1988, SIAM, pp. 2-42. MR**90a:65248****15.**P. L. Lions,*On the Schwarz alternating method II*, in T. Chan et al., eds., Domain Decomposition Methods, Philadelphia, 1989, SIAM, pp. 47-70. MR**90e:65140****16.**P. L. Lions,*On the Schwarz alternating method III*, in Chan et al., eds., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, 1990, SIAM, pp. 202-223. MR**91g:65226****17.**S. Nepomnyashchikh,*Application of domain decomposition to elliptic problems with discontinuous coefficients*, in R. Glowinski et al., eds., Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, 1991, SIAM, pp. 242-251. MR**92a:65023****18.**T. Lü, C. Liem and T. Shih,*Parallel algorithms for variational inequalities based on domain decomposition*, System Sci. Math. Sci., 4 (1991), pp. 1-99. MR**93b:49010****19.**P. Tarvainen,*Block relaxation methods for algebraic obstacle problems with M-matrices: theory and applications*, Report 63, Univ. of Jyväskylä, Department of Mathematics, Jyväskylä, 1994. MR**97g:90154****20.**J. Zeng and S. Zhou,*On monotone and geometric convergence of Schwarz methods for two-sided obstacle problems*, SIAM J. Numer. Anal., vol. 35, no. 2, (1998). pp. 600-616. MR**99d:65199**

Retrieve articles in *Mathematics of Computation*
with MSC (1991):
65K10,
65J99,
35R35,
35J60,
49D27,
49D37

Retrieve articles in all journals with MSC (1991): 65K10, 65J99, 35R35, 35J60, 49D27, 49D37

Additional Information

**Lori Badea**

Affiliation:
Institute of Mathematics, Romanian Academy of Sciences, Bucharest, Romania

Email:
lbadea@stoilow.imar.ro

**Junping Wang**

Affiliation:
Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071

Email:
junping@uwyo.edu

DOI:
https://doi.org/10.1090/S0025-5718-99-01164-3

Keywords:
variational inequalities,
obstacle problems,
finite element methods,
domain decomposition methods

Received by editor(s):
December 16, 1997

Received by editor(s) in revised form:
September 22, 1998

Published electronically:
May 20, 1999

Additional Notes:
The research of Wang is supported in part by National Science Foundation Grant # DMS-9706985

Article copyright:
© Copyright 2000
American Mathematical Society